skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Glacial Ice Sheet Extent Effects on Modeled Tidal Mixing and the Global Overturning Circulation
Abstract At present, tides supply approximately half (1 TW) of the energy necessary to sustain the global deep meridional overturning circulation (MOC) through diapycnal mixing. During the Last Glacial Maximum (LGM; 19,000–26,500 years BP), tidal dissipation in the open ocean may have strongly increased due to the 120‐ to 130‐m global mean sea level drop and changes in ocean basin shape. However, few investigations into LGM climate and ocean circulation consider LGM tidal mixing changes. Here, using an intermediate complexity climate model, we present a detailed investigation on how changes in tidal dissipation would affect the global MOC. Present‐day and LGM tidal constituents M2, S2, K1, and O1are simulated using a tide model and accounting for LGM bathymetric changes. The tide model results suggest that the LGM energy supply to the internal wave field was 1.8–3 times larger than at present and highly sensitive to Antarctic and Laurentide ice sheet extent. Including realistic LGM tide forcing in the LGM climate simulations leads to large increases in Atlantic diapycnal diffusivities and strengthens (by 14–64% at 32°S) and deepens the Atlantic MOC. Increased input of tidal energy leads to a greater drawdown of North Atlantic Deep Water and mixing with Antarctic Bottom Water altering Atlantic temperature and salinity distributions. Our results imply that changes in tidal dissipation need be accounted for in paleoclimate simulation setup as they can lead to large differences in ocean mixing, the global MOC, and presumably also ocean carbon and other biogeochemical cycles.  more » « less
Award ID(s):
1559153
PAR ID:
10459488
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
34
Issue:
8
ISSN:
2572-4517
Page Range / eLocation ID:
p. 1437-1454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A toy model for the deep ocean overturning circulation in multiple basins is presented and applied to study the role of buoyancy forcing and basin geometry in the ocean’s global overturning. The model reproduces the results from idealized general circulation model simulations and provides theoretical insights into the mechanisms that govern the structure of the overturning circulation. The results highlight the importance of the diabatic component of the meridional overturning circulation (MOC) for the depth of North Atlantic Deep Water (NADW) and for the interbasin exchange of deep ocean water masses. This diabatic component, which extends the upper cell in the Atlantic below the depth of adiabatic upwelling in the Southern Ocean, is shown to be sensitive to the global area-integrated diapycnal mixing rate and the density contrast between NADW and Antarctic Bottom Water (AABW). The model also shows that the zonally averaged global overturning circulation is to zeroth-order independent of whether the ocean consists of one or multiple connected basins, but depends on the total length of the southern reentrant channel region (representing the Southern Ocean) and the global ocean area integrated diapycnal mixing. Common biases in single-basin simulations can thus be understood as a direct result of the reduced domain size. 
    more » « less
  2. Abstract Reconstructing the circulation, mixing and carbon content of the Last Glacial Maximum ocean remains challenging. Recent hypotheses suggest that a shoaled Atlantic meridional overturning circulation or increased stratification would have reduced vertical mixing, isolated the abyssal ocean and increased carbon storage, thus contributing to lower atmospheric CO2concentrations. Here, using an ensemble of ocean simulations, we evaluate impacts of changes in tidal energy dissipation due to lower sea levels on ocean mixing, circulation, and carbon isotope distributions. We find that increased tidal mixing strengthens deep ocean flow rates and decreases vertical gradients of radiocarbon andδ13C in the deep Atlantic. Simulations with a shallower overturning circulation and more vigorous mixing fit sediment isotope data best. Our results, which are conservative, provide observational support that vertical mixing in the glacial Atlantic may have been enhanced due to more vigorous tidal dissipation, despite shoaling of the overturning circulation and increases in stratification. 
    more » « less
  3. Abstract The mechanisms and geographic distribution of global tidal dissipation in barotropic tidal models are examined using a high resolution unstructured mesh finite element model. Mesh resolution varies between 2 and 25 km and is especially focused on inner shelves and steep bathymetric gradients. Tidal response sensitivities to bathymetric changes are examined to put into context response sensitivities to frictional processes. We confirm that the Ronne Ice Shelf dramatically affects Atlantic tides but also find that bathymetry in the Hudson Bay system is a critical control. We follow a sequential frictional parameter optimization process and use TPXO9 data‐assimilated tidal elevations as a reference solution. From simulated velocities and depths, dissipation within the global model is estimated and allows us to pinpoint dissipation at high resolution. Boundary layer dissipation is extremely focused with 1.4% of the ocean accounting for 90% of the total. Internal tide friction is much more distributed with 16.7% of the ocean accounting for 90% of the total. Often highly regional dissipation can impact basin‐scale and even ocean wide tides. Optimized boundary layer friction parameters correlate very well with the physical characteristics of the locality with high friction factors associated with energetic tidal regions, deep ocean island chains, and ice covered areas. Global complex M2tide errors are 1.94 cm in deep waters. Total global boundary layer and internal tide dissipation are estimated, respectively, at 1.83 and 1.49 TW. This continues the trend in the literature toward attributing more dissipation to internal tides. 
    more » « less
  4. We quantify the volume transport and watermass transformation rates of the global overturning circulation using the Estimating the Circulation and Climate of the Ocean version 4 release 4 (ECCOv4r4) reanalysis product. The ECCO solution shows large rates of intercell exchange between the mid‐depth and abyssal cells, consistent with other recent inferences. About 10 Sv of North Atlantic deep water enters the abyssal cell in the Southern Ocean and is balanced by a similar amount of apparrent diapycnal upwelling in the Indo‐Pacific. However, much of the upwelling in ECCO's deep ocean is not associated with irreversible watermass transformations, as typically assumed in theoretical models. Instead, a dominant portion of the abyssal circulation in ECCO is associated with isopycnal volume tendencies, reflecting a deep ocean in a state of change and a circulation in which transient tendencies play a leading role in the watermass budget. These volume tendencies are particularly prominent in the Indo‐Pacific, where ECCO depicts a cooling and densifying deep ocean with relatively little mixing‐driven upwelling, in disagreement with recent observations of deep Indo‐Pacific warming trends. Although abyssal ocean observations are insufficient to exclude the trends modeled by ECCO, we note that ECCO's parameterized diapycnal mixing in the abyssal ocean is much smaller than observational studies suggest and may lead to an under‐representation of Antarctic Bottom Water consumption in the abyssal ocean. Whether or not ECCO's tendencies are realistic, they are a key part of its abyssal circulation and hence need to be taken into consideration when interpreting the ECCO solution. 
    more » « less
  5. Abstract Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth’s climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate—the relative importance of their local versus remote breaking into turbulence—remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models. 
    more » « less