skip to main content

Title: An energy‐stable mixed formulation for isogeometric analysis of incompressible hyperelastodynamics

We develop a mixed formulation for incompressible hyperelastodynamics based on a continuum modeling framework recently developed in the work of Liu and Marsden and smooth generalizations of the Taylor‐Hood element based on nonuniform rational B‐splines (NURBSs). This continuum formulation draws a link between computational fluid dynamics and computational solid dynamics. This link inspires an energy stability estimate for the spatial discretization, which favorably distinguishes the formulation from the conventional mixed formulations for finite elasticity. The inf‐sup condition is utilized to provide a bound for the pressure field. The generalized‐αmethod is applied for temporal discretization, and a nested block preconditioner is invoked for the solution procedure. The inf‐sup stability for different pairs of NURBS elements is elucidated through numerical assessment. The convergence rate of the proposed formulation with various combinations of mixed elements is examined by the manufactured solution method. The numerical scheme is also examined under compressive and tensile loads for isotropic and anisotropic hyperelastic materials. Finally, a suite of dynamic problems is numerically studied to corroborate the stability and conservation properties.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Page Range / eLocation ID:
p. 937-963
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work presents a stabilized formulation for phase‐field fracture of hyperelastic materials near the limit of incompressibility. At this limit, traditional mixed displacement and pressure formulations must satisfy the inf‐sup condition for solution stability. The mixed formulation coupled with the damage field can lead to an inhibition of crack opening as volumetric changes are severely penalized effectively creating a pressure‐bubble. To overcome this bottleneck, we utilize a mixed formulation with a perturbed Lagrangian formulation which enforces the incompressibility constraint in the undamaged material and reduces the pressure effect in the damaged material. A mesh‐dependent stabilization technique based on the residuals of the Euler–Lagrange equations multiplied with a differential operator acting on the weight space is used, allowing for linear interpolation of all field variables of the elastic subproblem. This formulation was validated with three examples at finite deformations: a plane‐stress pure‐shear test, a two‐dimensional geometry in plane‐stress, and a three‐dimensional notched sample. In the last example, we incorporate a hybrid formulation with an additive strain energy decomposition to account for different behaviors in tension and compression. The results show close agreement with analytical solutions for crack tip opening displacements and performs well at the limit of incompressibility.

    more » « less
  2. We consider the numerical solution of a fourth‐order total variation flow problem representing surface relaxation below the roughening temperature. Based on a regularization and scaling of the nonlinear fourth‐order parabolic equation, we perform an implicit discretization in time and a C0Interior Penalty Discontinuous Galerkin (C0IPDG) discretization in space. The C0IPDG approximation can be derived from a mixed formulation involving numerical flux functions where an appropriate choice of the flux functions allows to eliminate the discrete dual variable. The fully discrete problem can be interpreted as a parameter dependent nonlinear system with the discrete time as a parameter. It is solved by a predictor corrector continuation strategy featuring an adaptive choice of the time step sizes. A documentation of numerical results is provided illustrating the performance of the C0IPDG method and the predictor corrector continuation strategy. The existence and uniqueness of a solution of the C0IPDG method will be shown in the second part of this paper.

    more » « less
  3. Abstract

    We investigate the temporal accuracy of two generalized‐ schemes for the incompressible Navier‐Stokes equations. In a widely‐adopted approach, the pressure is collocated at the time steptn + 1while the remainder of the Navier‐Stokes equations is discretized following the generalized‐ scheme. That scheme has been claimed to besecond‐order accurate in time. We developed a suite of numerical code using inf‐sup stable higher‐order non‐uniform rational B‐spline (NURBS) elements for spatial discretization. In doing so, we are able to achieve high spatial accuracy and to investigate asymptotic temporal convergence behavior. Numerical evidence suggests that onlyfirst‐order accuracyis achieved, at least for the pressure, in this aforesaid temporal discretization approach. On the other hand, evaluating the pressure at the intermediate time step recovers second‐order accuracy, and the numerical implementation is simplified. We recommend this second approach as the generalized‐ scheme of choice when integrating the incompressible Navier‐Stokes equations.

    more » « less
  4. null (Ed.)
    Abstract We propose and analyse a mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in a Banach space setting, employing classical results on nonlinear monotone operators and a regularization technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and fully discrete finite element approximations on simplicial grids with spatial discretization based on the Raviart–Thomas spaces of degree $k$ for the pseudostress tensor and discontinuous piecewise polynomial elements of degree $k$ for the velocity and backward Euler time discretization. We provide several numerical results to confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method for a range of model parameters. 
    more » « less
  5. Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a nonstandard discretization of the right-hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressure-robust scheme with low regularity. The numerical analysis applies divergence-free $H^1$-conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a priori error estimates will be presented for the (first-order) nonconforming Crouzeix-Raviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right-hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results. 
    more » « less