skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local climate determines vulnerability to camouflage mismatch in snowshoe hares
Abstract AimPhenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here, we quantify the environmental drivers of colour moult phenology, phenotypic plasticity, and the extent of phenological mismatch in seasonal camouflage to assess vulnerability to mismatch in a common North American mammal. LocationNorth America. Time period2010–2017. Major taxa studiedSnowshoe hare (Lepus americanus). MethodsWe used > 5,500 by‐catch photographs of snowshoe hares from 448 remote camera trap sites at three independent study areas. To quantify moult phenology and phenotypic plasticity, we used multinomial logistic regression models that incorporated geospatial and high‐resolution climate data. We estimated occurrence of camouflage mismatch between hares’ coat colour and the presence and absence of snow over 7 years of monitoring. ResultsSpatial and temporal variation in moult phenology depended on local climate conditions more so than on latitude. First, hares in colder, snowier areas moulted earlier in the fall and later in the spring. Next, hares exhibited phenotypic plasticity in moult phenology in response to annual variation in temperature and snow duration, especially in the spring. Finally, the occurrence of camouflage mismatch varied in space and time; white hares on dark, snowless background occurred primarily during low‐snow years in regions characterized by shallow, short‐lasting snowpack. Main conclusionsLong‐term climate and annual variation in snow and temperature determine coat colour moult phenology in snowshoe hares. In most areas, climate change leads to shorter snow seasons, but the occurrence of camouflage mismatch varies across the species’ range. Our results underscore the population‐specific susceptibility to climate change‐induced stressors and the necessity to understand this variation to prioritize the populations most vulnerable under global environmental change.  more » « less
Award ID(s):
1736249 1907022
PAR ID:
10459501
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
29
Issue:
3
ISSN:
1466-822X
Page Range / eLocation ID:
p. 503-515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global reduction in snow cover duration is one of the most consistent and widespread climate change outcomes. Declining snow duration has severe negative consequences for diverse taxa including seasonally color molting species, which rely on snow for camouflage. However, phenotypic plasticity may facilitate adaptation to reduced snow duration. Plastic responses could occur in the color molt phenology or through behavior that minimizes coat color mismatch or its consequences. We quantified molt phenology of 200 wild snowshoe hares (Lepus americanus), and measured microhabitat choice and local snow cover. Similar to other studies, we found that hares did not show behavioral plasticity to minimize coat color mismatch via background matching; instead they preferred colder, snow free areas regardless of their coat color. Furthermore, hares did not behaviorally mitigate the negative consequences of mismatch by choosing resting sites with denser vegetation cover when mismatched. Importantly, we demonstrated plasticity in the initiation and the rate of the molt and established the direct effect of snow on molt phenology; greater snow cover was associated with whiter hares and this association was not due to whiter hares preferring snowier areas. However, despite the observed snow-mediated plasticity in molt phenology, camouflage mismatch with white hares on brown snowless ground persisted and was more frequent during early snowmelt. Thus, we find no evidence that phenotypic plasticity in snowshoe hares is sufficient to facilitate adaptive rescue to camouflage mismatch under climate change. 
    more » « less
  2. Understanding whether organisms will be able to adapt to human-induced stressors currently endangering their existence is an urgent priority. Globally, multiple species moult from a dark summer to white winter coat to maintain camouflage against snowy landscapes. Decreasing snow cover duration owing to climate change is increasing mismatch in seasonal camouflage. To directly test for adaptive responses to recent changes in snow cover, we repeated historical (1950s) field studies of moult phenology in mountain hares ( Lepus timidus ) in Scotland. We found little evidence that population moult phenology has shifted to align seasonal coat colour with shorter snow seasons, or that phenotypic plasticity prevented increases in camouflage mismatch. The lack of responses resulted in 35 additional days of mismatch between 1950 and 2016. We emphasize the potential role of weak directional selection pressure and low genetic variability in shaping the scope for adaptive responses to anthropogenic stressors. 
    more » « less
  3. Species that seasonally moult from brown to white to match snowy backgrounds become conspicuous and experience increased predation risk as snow cover duration declines. Long-term adaptation to camouflage mismatch in a changing climate might occur through phenotypic plasticity in colour moult phenology and or evolutionary shifts in moult rate or timing. Also, adaptation may include evolutionary shifts towards winter brown phenotypes that forgo the winter white moult. Most studies of these processes have occurred in winter white populations, with little attention to polymorphic populations with sympatric winter brown and winter white morphs. Here, we used remote camera traps to record moult phenology and mismatch in two polymorphic populations of Arctic foxes in Sweden over 2 years. We found that the colder, more northern population moulted earlier in the autumn and later in the spring. Next, foxes moulted earlier in the autumn and later in the spring during colder and snowier years. Finally, white foxes experienced relatively low camouflage mismatch while blue foxes were mismatched against snowy backgrounds most of the autumn through the spring. Because the brown-on-white mismatch imposes no evident costs, we predict that as snow duration decreases, increasing blue morph frequencies might help facilitate species persistence. 
    more » « less
  4. Abstract Plants track changing climate partly by shifting their phenology, the timing of recurring biological events. It is unknown whether these observed phenological shifts are sufficient to keep pace with rapid climate changes. Phenological mismatch, or the desynchronization between the timing of critical phenological events, has long been hypothesized but rarely quantified on a large scale. It is even less clear how human activities have contributed to this emergent phenological mismatch. In this study, we used remote sensing observations to systematically evaluate how plant phenological shifts have kept pace with warming trends at the continental scale. In particular, we developed a metric of spatial mismatch that connects empirical spatiotemporal data to ecological theory using the “velocity of change” approach. In northern mid‐to high‐latitude regions (between 30–70°N) over the last three decades (1981–2014), we found evidence of a widespread mismatch between land surface phenology and climate where isolines of phenology lag behind or move in the opposite direction to the isolines of climate. These mismatches were more pronounced in human‐dominated landscapes, suggesting a relationship between human activities and the desynchronization of phenology dynamics with climate variations. Results were corroborated with independent ground observations that indicate the mismatch of spring phenology increases with human population density for several plant species. This study reveals the possibility that not even some of the foremost responses in vegetation activity match the pace of recent warming. This systematic analysis of climate‐phenology mismatch has important implications for the sustainable management of vegetation in human‐dominated landscapes under climate change. 
    more » « less
  5. Climate change leads to unequal shifts in the phenology of interacting species, such as consumers and their resources, leading to potential phenological mismatches. While studies have investigated how phenological mismatch affects wild populations, we still lack studies and a framework for investigating how phenological mismatch affects ecosystems, particularly nutrient cycling. 
    more » « less