skip to main content


Title: Inter‐annual hydroclimatic variability in coastal Tanzania
Abstract

Climatic controls regulate the coupled natural and human systems in coastal Tanzania, where mangrove wetlands provide a wealth of ecosystem services to coastal communities. Previous research has explained the precipitation seasonality of eastern Africa in terms of the local monsoons. This research examines a wider range of hydroclimatic variables, including water vapour flux, evapotranspiration, runoff, and ocean salinity, and the sources of low‐frequency atmosphere–ocean variability that support mangrove productivity and associated ecosystem services. Results confirm previous work suggesting that the northeast monsoon (kaskazi) largely corresponds to the “short rains” of October–December and extends through February, while the southeast monsoon (kusi) corresponds to the “long rains” of March–May and the drier June–September. The Indian Ocean Dipole (IOD) and, to a lesser extent, El Niño–Southern Oscillation (ENSO) are important modulators not only of precipitation (as has been shown previously) but also of water vapour flux, evapotranspiration, runoff, and salinity variability. Duringkaskazi, positive (negative) hydroclimatic anomalies occur during positive (negative) IOD, with a stronger IOD influence occurring during its positive phase, when seasonal anomalies of precipitation, evapotranspiration, and runoff exceed +50, 25, and 100%, and nearby salinity decreases by 0.5 practical salinity units. Duringkusi, the contrast between the positive and negative IOD modes is subtler, and the pattern is dictated more by variability in “long rains” months than in the dry months. The coincidence of the positive IOD and El Niño amplify this hydroclimatic signal. Because previous work suggests the likelihood of increased tendency for positive IOD and increased moisture variability associated with El Niño events in the future, wetter conditions may accompany thekaskazi, with less change expected during thekusi. These results advance understanding of the key environmental drivers controlling mangrove productivity and wetland spatial distribution that provide ecosystem services essential to the well‐being of the human population.

 
more » « less
NSF-PAR ID:
10459509
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
39
Issue:
12
ISSN:
0899-8418
Page Range / eLocation ID:
p. 4736-4750
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on inter-seasonal to inter-annual time scales, and to locate the source of moisture. Seasonal composites during El Niño Southern Oscillation/Indian Ocean Dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies towards Australia. During co-occurring La Niña and negative-IOD events, salty anomalies around the maritime continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, there is the moisture transport divergence anomaly over Australia and results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean-atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g. 2010-11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall. 
    more » « less
  2. Abstract The Indian and Pacific Oceans surround the Maritime Continent (MC). Major modes of sea surface temperature variability in both oceans, including the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO), can strongly affect precipitation on the MC. The prevalence of fires in the MC is closely associated with precipitation amount and terrestrial water storage in September and October. Precipitation and terrestrial water storage, which is a measurement of hydrological drought conditions, are significantly modulated by Indian Ocean Dipole (IOD) and El Niño events. We utilize long-term datasets to study the combined effects of ENSO and the IOD on MC precipitation during the past 100 years (1900–2019) and find that the reductions in MC precipitation and terrestrial water storage are more pronounced during years when El Niño and a positive phase of the IOD (pIOD) coincided. The combined negative effects are produced mainly through an enhanced reduction of upward motion over the MC. Coincident El Niño-pIOD events have occurred more frequently after 1965. However, climate models do not project a higher occurrence of coincident El Niño-pIOD events in a severely warming condition, implying that not the global warming but the natural variability might be the leading cause of this phenomenon. 
    more » « less
  3. Abstract

    Rainfall in southern California is highly variable, with some fluctuations explainable by climate patterns. Resulting runoff and heightened streamflow from rain events introduces freshwater plumes into the coastal ocean. Here we use a 105-year daily sea surface salinity record collected at Scripps Pier in La Jolla, California to show that El Niño Southern Oscillation and Pacific Decadal Oscillation both have signatures in coastal sea surface salinity. Averaging the freshest quantile of sea surface salinity over each year’s winter season provides a useful metric for connecting the coastal ocean to interannual winter rainfall variability, through the influence of freshwater plumes originating, at closest, 7.5 km north of Scripps Pier. This salinity metric has a clear relationship with dominant climate phases: negative Pacific Decadal Oscillation and La Niña conditions correspond consistently with lack of salinity anomaly/ dry winters. Fresh salinity anomalies (i.e., wet winters) occur during positive phase Pacific Decadal Oscillation and El Niño winters, although not consistently. This analysis emphasizes the strong influence that precipitation and consequent streamflow has on the coastal ocean, even in a region of overall low freshwater input, and provides an ocean-based metric for assessing decadal rainfall variability.

     
    more » « less
  4. Abstract

    Tropical modes of variability, such as El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), exert a strong influence on the interannual variability of Australian precipitation. Nevertheless, commonly used indices of ENSO and IOD variability display significant co‐variability that prevents a robust quantification of the independent contribution of each mode to precipitation anomalies. This co‐variability issue is often addressed by statistically removing ENSO or IOD variability from the precipitation field before calculating teleconnection patterns. However, by performing a suite of coupled and uncoupled modeling experiments in which either ENSO or IOD variability is physically removed, we show that ENSO‐only‐driven precipitation patterns computed by statistically removing the IOD influence significantly underestimate the impact of ENSO on Australian precipitation variability. Inspired by this, we propose a conceptual model that allows one to effectively separate the contribution of each mode to Australian precipitation variability.

     
    more » « less
  5. Abstract

    Atlantic Niño is the Atlantic equivalent of El Niño-Southern Oscillation (ENSO), and it has prominent impacts on regional and global climate. Existing studies suggest that the Atlantic Niño may arise from local atmosphere-ocean interaction and is sometimes triggered by the Atlantic Meridional Mode (AMM), with overall weak ENSO contribution. By analyzing observational datasets and performing numerical model experiments, here we show that the Atlantic Niño can be induced by the Indian Ocean Dipole (IOD). We find that the enhanced rainfall in the western tropical Indian Ocean during positive IOD weakens the easterly trade winds over the tropical Atlantic, causing warm anomalies in the central and eastern equatorial Atlantic basin and therefore triggering the Atlantic Niño. Our finding suggests that the cross-basin impact from the tropical Indian Ocean plays a more important role in affecting interannual climate variability than previously thought.

     
    more » « less