skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid microsphere‐assisted peptide screening (MAPS) of promiscuous MHCII‐binding peptides in Zika virus envelope protein
Abstract Despite promising developments in computational tools, peptide‐class II MHC (MHCII) binding predictors continue to lag behind their peptide‐class I MHC counterparts. Consequently, peptide–MHCII binding is often evaluated experimentally using competitive binding assays, which tend to sacrifice throughput for quantitative binding detail. Here, we developed a high‐throughput semiquantitative peptide–MHCII screening strategy termed microsphere‐assisted peptide screening (MAPS) that aims to balance the accuracy of competitive binding assays with the throughput of computational tools. Using MAPS, we screened a peptide library from Zika virus envelope (E) protein for binding to four common MHCII alleles (DR1, DR4, DR7, DR15). Interestingly, MAPS revealed a significant overlap between peptides that promiscuously bind multiple MHCII alleles and antibody neutralization sites. This overlap was also observed for rotavirus outer capsid glycoprotein VP7, suggesting a deeper relationship between B cell and CD4+T cell specificity which can facilitate the design of broadly protective vaccines to Zika and other viruses.  more » « less
Award ID(s):
1645229 1653611
PAR ID:
10459516
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
66
Issue:
3
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ability to accurately identify peptide ligands for a given major histocompatibility complex class I (MHC-I) molecule has immense value for targeted anticancer therapeutics. However, the highly polymorphic nature of the MHC-I protein makes universal prediction of peptide ligands challenging due to lack of experimental data describing most MHC-I variants. To address this challenge, we have developed a deep convolutional neural network, HLA-Inception, capable of predicting MHC-I peptide binding motifs using electrostatic properties of the MHC-I binding pocket. By approaching this immunological issue using molecular biophysics, we measure the impact of sidechain arrangement and topology on peptide binding, feature not captured by sequence-based MHC-I prediction methods. Through a combination of molecular modeling and simulation, 5821 MHC-I alleles were modeled, providing extensive coverage across human populations. Predicted peptide binding motifs fell into distinct clusters, each defined with different degrees of submotif heterogeneity. Peptide binding scores generated by HLA-Inception are strongly correlated with quantitative MHC-I binding data, indicating predicted peptides can be ranked, both within and between alleles. HLA-inception also showed high precision when predicting naturally presented peptides and can be used for rapid proteome-scale MHC-I peptide binding predictions. Finally, we show that the binding pocket diversity measured by HLA inception predicts response to checkpoint blockade. Citation Format: Eric A. Wilson, John Kevin Cava, Diego Chowell, Abhishek Singharoy, Karen S. Anderson. Protein structure-based modeling to improve MHC class I epitope predictions. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5376. 
    more » « less
  2. Peptide binding to major histocompatibility complexes (MHCs) is a central component of the immune system, and understanding the mechanism behind stable peptide–MHC binding will aid the development of immunotherapies. While MHC binding is mostly influenced by the identity of the so-called anchor positions of the peptide, secondary interactions from nonanchor positions are known to play a role in complex stability. However, current MHC-binding prediction methods lack an analysis of the major conformational states and might underestimate the impact of secondary interactions. In this work, we present an atomically detailed analysis of peptide–MHC binding that can reveal the contributions of any interaction toward stability. We propose a simulation framework that uses both umbrella sampling and adaptive sampling to generate a Markov state model (MSM) for a coronavirus-derived peptide (QFKDNVILL), bound to one of the most prevalent MHC receptors in humans (HLA-A24:02). While our model reaffirms the importance of the anchor positions of the peptide in establishing stable interactions, our model also reveals the underestimated importance of position 4 (p4), a nonanchor position. We confirmed our results by simulating the impact of specific peptide mutations and validated these predictions through competitive binding assays. By comparing the MSM of the wild-type system with those of the D4A and D4P mutations, our modeling reveals stark differences in unbinding pathways. The analysis presented here can be applied to any peptide–MHC complex of interest with a structural model as input, representing an important step toward comprehensive modeling of the MHC class I pathway. 
    more » « less
  3. Abstract MotivationMHC Class I protein plays an important role in immunotherapy by presenting immunogenic peptides to anti-tumor immune cells. The repertoires of peptides for various MHC Class I proteins are distinct, which can be reflected by their diverse binding motifs. To characterize binding motifs for MHC Class I proteins, in vitro experiments have been conducted to screen peptides with high binding affinities to hundreds of given MHC Class I proteins. However, considering tens of thousands of known MHC Class I proteins, conducting in vitro experiments for extensive MHC proteins is infeasible, and thus a more efficient and scalable way to characterize binding motifs is needed. ResultsWe presented a de novo generation framework, coined PepPPO, to characterize binding motif for any given MHC Class I proteins via generating repertoires of peptides presented by them. PepPPO leverages a reinforcement learning agent with a mutation policy to mutate random input peptides into positive presented ones. Using PepPPO, we characterized binding motifs for around 10 000 known human MHC Class I proteins with and without experimental data. These computed motifs demonstrated high similarities with those derived from experimental data. In addition, we found that the motifs could be used for the rapid screening of neoantigens at a much lower time cost than previous deep-learning methods. Availability and implementationThe software can be found in https://github.com/minrq/pMHC. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. Major histocompatibility complex Class I (MHC-I) molecules bind to peptides derived from intracellular antigens and present them on the surface of cells, allowing the immune system (T cells) to detect them. Elucidating the process of this presentation is essential for regulation and potential manipulation of the cellular immune system. Predicting whether a given peptide binds to an MHC molecule is an important step in the above process and has motivated the introduction of many computational approaches to address this problem. NetMHCPan, a pan-specific model for predicting binding of peptides to any MHC molecule, is one of the most widely used methods which focuses on solving this binary classification problem using shallow neural networks. The recent successful results of Deep Learning (DL) methods, especially Natural Language Processing (NLP-based) pretrained models in various applications, including protein structure determination, motivated us to explore their use in this problem. Specifically, we consider the application of deep learning models pretrained on large datasets of protein sequences to predict MHC Class I-peptide binding. Using the standard performance metrics in this area, and the same training and test sets, we show that our models outperform NetMHCpan4.1, currently considered as the-state-of-the-art. 
    more » « less
  5. Abstract Major Histocompatibility Complex (MHC) genes are one of the most polymorphic gene groups known in vertebrates. MHC genes also exhibit allelic variants that are shared among taxa, referred to as trans‐specific polymorphism (TSP). The role that selection plays in maintaining such high diversity within species, as well as TSP, is an ongoing discussion in biology. In this study, we used deep‐sequencing techniques to characterize MHC class IIb gene diversity in three sympatric species of darters. We found at least 5 copies of the MHC gene in darters, with 126 genetic variants encoding 122 unique amino acid sequences. We identified four supertypes based on the binding properties of proteins encoded by the sequences. Although each species had a unique pool of variants, many variants were shared between species pairs and across all three species. Phylogenetic analysis showed that the variants did not group together monophyletically based on species identity or on supertype. An expanded phylogenetic analysis showed that some darter alleles grouped together with alleles from other percid fishes. Our findings show that TSP occurs in darters, which suggests that balancing selection is acting at the genotype level. Supertypes, however, are most likely evolving convergently, as evidenced by the fact that alleles do not form monophyletic groups based on supertype. Our research demonstrates that selection may be acting differently on MHC genes at the genotype and supertype levels, selecting for the maintenance of high genotypic diversity while driving the convergent evolution of similar MHC phenotypes across different species. 
    more » « less