skip to main content


Title: The relative contributions of visual and semantic information in the neural representation of object categories
Abstract Introduction

How do multiple sources of information interact to form mental representations of object categories? It is commonly held that object categories reflect the integration of perceptual features and semantic/knowledge‐based features. To explore the relative contributions of these two sources of information, we used functional magnetic resonance imaging (fMRI) to identify regions involved in the representation object categories with shared visual and/or semantic features.

Methods

Participants (N = 20) viewed a series of objects that varied in their degree of visual and semantic overlap in the MRI scanner. We used a blocked adaptation design to identify sensitivity to visual and semantic features in a priori visual processing regions and in a distributed network of object processing regions with an exploratory whole‐brain analysis.

Results

Somewhat surprisingly, within higher‐order visual processing regions—specifically lateral occipital cortex (LOC)—we did not obtain any difference in neural adaptation for shared visual versus semantic category membership. More broadly, both visual and semantic information affected a distributed network of independently identified category‐selective regions. Adaptation was seen a whole‐brain network of processing regions in response to visual similarity and semantic similarity; specifically, the angular gyrus (AnG) adapted to visual similarity and the dorsomedial prefrontal cortex (DMPFC) adapted to both visual and semantic similarity.

Conclusions

Our findings suggest that perceptual features help organize mental categories throughout the object processing hierarchy. Most notably, visual similarity also influenced adaptation in nonvisual brain regions (i.e., AnG and DMPFC). We conclude that category‐relevant visual features are maintained in higher‐order conceptual representations and visual information plays an important role in both the acquisition and neural representation of conceptual object categories.

 
more » « less
NSF-PAR ID:
10459542
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Brain and Behavior
Volume:
9
Issue:
10
ISSN:
2162-3279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Objects are fundamental to scene understanding. Scenes are defined by embedded objects and how we interact with them. Paradoxically, scene processing in the brain is typically discussed in contrast to object processing. Using the BOLD5000 dataset (Chang et al., 2019), we examined whether objects within a scene predicted the neural representation of scenes, as measured by functional magnetic resonance imaging in humans. Stimuli included 1,179 unique scenes across 18 semantic categories. Object composition of scenes were compared across scene exemplars in different semantic scene categories, and separately, in exemplars of the same scene category. Neural representations in scene- and object-preferring brain regions were significantly related to which objects were in a scene, with the effect at times stronger in the scene-preferring regions. The object model accounted for more variance when comparing scenes within the same semantic category to scenes from different categories. Here, we demonstrate the function of scene-preferring regions includes the processing of objects. This suggests visual processing regions may be better characterized by the processes, which are engaged when interacting with the stimulus kind, such as processing groups of objects in scenes, or processing a single object in our foreground, rather than the stimulus kind itself.

     
    more » « less
  2. Abstract

    Anterior regions of the ventral visual stream encode substantial information about object categories. Are top-down category-level forces critical for arriving at this representation, or can this representation be formed purely through domain-general learning of natural image structure? Here we present a fully self-supervised model which learns to represent individual images, rather than categories, such that views of the same image are embedded nearby in a low-dimensional feature space, distinctly from other recently encountered views. We find that category information implicitly emerges in the local similarity structure of this feature space. Further, these models learn hierarchical features which capture the structure of brain responses across the human ventral visual stream, on par with category-supervised models. These results provide computational support for a domain-general framework guiding the formation of visual representation, where the proximate goal is not explicitly about category information, but is instead to learn unique, compressed descriptions of the visual world.

     
    more » « less
  3. Abstract

    The human visual cortex is organized in a hierarchical manner. Although previous evidence supporting this hypothesis has been accumulated, specific details regarding the spatiotemporal information flow remain open. Here we present detailed spatiotemporal correlation profiles of neural activity with low‐level and high‐level features derived from an eight‐layer neural network pretrained for object recognition. These correlation profiles indicate an early‐to‐late shift from low‐level features to high‐level features and from low‐level regions to higher‐level regions along the visual hierarchy, consistent with feedforward information flow. Additionally, we computed three sets of features from the low‐ and high‐level features provided by the neural network: object‐category‐relevant low‐level features (the common components between low‐level and high‐level features), low‐level features roughly orthogonal to high‐level features (the residual Layer 1 features), and unique high‐level features that were roughly orthogonal to low‐level features (the residual Layer 7 features). Contrasting the correlation effects of the common components and the residual Layer 1 features, we observed that the early visual cortex (EVC) exhibited a similar amount of correlation with the two feature sets early in time, but in a later time window, the EVC exhibited a higher and longer correlation effect with the common components (i.e., the low‐level object‐category‐relevant features) than with the low‐level residual features—an effect unlikely to arise from purely feedforward information flow. Overall, our results indicate that non‐feedforward processes, for example, top‐down influences from mental representations of categories, may facilitate differentiation between these two types of low‐level features within the EVC.

     
    more » « less
  4. Category-selectivity is a fundamental principle of organization of perceptual brain regions. Human occipitotemporal cortex is subdivided into areas that respond preferentially to faces, bodies, artifacts, and scenes. However, observers need to combine information about objects from different categories to form a coherent understanding of the world. How is this multi-category information encoded in the brain? Studying the multivariate interactions between brain regions with fMRI and artificial neural networks, we found that the angular gyrus shows joint statistical dependence with multiple category-selective regions. Additional analyses revealed a cortical map of areas that encode information across different subsets of categories, indicating that multi-category information is not encoded in a single stage at a centralized location, but in multiple distinct brain regions. 
    more » « less
  5. Category selectivity is a fundamental principle of organization of perceptual brain regions. Human occipitotemporal cortex is subdivided into areas that respond preferentially to faces, bodies, artifacts, and scenes. However, observers need to combine information about objects from different categories to form a coherent understanding of the world. How is this multicategory information encoded in the brain? Studying the multivariate interactions between brain regions of male and female human subjects with fMRI and artificial neural networks, we found that the angular gyrus shows joint statistical dependence with multiple category-selective regions. Adjacent regions show effects for the combination of scenes and each other category, suggesting that scenes provide a context to combine information about the world. Additional analyses revealed a cortical map of areas that encode information across different subsets of categories, indicating that multicategory information is not encoded in a single centralized location, but in multiple distinct brain regions.

    SIGNIFICANCE STATEMENTMany cognitive tasks require combining information about entities from different categories. However, visual information about different categorical objects is processed by separate, specialized brain regions. How is the joint representation from multiple category-selective regions implemented in the brain? Using fMRI movie data and state-of-the-art multivariate statistical dependence based on artificial neural networks, we identified the angular gyrus encoding responses across face-, body-, artifact-, and scene-selective regions. Further, we showed a cortical map of areas that encode information across different subsets of categories. These findings suggest that multicategory information is not encoded in a single centralized location, but at multiple cortical sites which might contribute to distinct cognitive functions, offering insights to understand integration in a variety of domains. 

    more » « less