skip to main content


Title: Expansion microscopy for the analysis of centrioles and cilia
Summary Lay Description

Centrioles are microtubule‐based structures organised as ninefold symmetrical cylinders which are, in human cells, ∼500 nm long and ∼230 nm wide. Centrioles assemble dozens of proteins around them forming centrosomes, which nucleate microtubules and organise spindle poles in mitosis. Centrioles, in addition, assemble cilia and flagella, two critically important organelles for signalling and motility. Due to centriole small size, electron microscopy has been a major imaging technique for the analysis of their ultrastructural features. However, being technically demanding, electron microscopy it is not easily available to the researchers and it is rarely used to collect large datasets. Expansion microscopy is an emerging approach in which biological specimens are embedded in a swellable polymer and isotopically expanded several fold. Physical separation of cellular structures allows the analysis of, otherwise unresolvable, structures by conventional optical microscopes. We present an adaptation of expansion microscopy approach, specifically developed for a robust analysis of centrioles and cilia. Our protocol can be used for the analysis of centriole number, duplication status, length, localisation of various centrosomal components and ciliation from large populations of cultured adherent and nonadherent cells and multiciliated cultures. We validate the method against electron microscopy and superresolution microscopy and demonstrate that it can be used as an accessible and reliable alternative to electron microscopy.

 
more » « less
NSF-PAR ID:
10459586
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Microscopy
Volume:
276
Issue:
3
ISSN:
0022-2720
Page Range / eLocation ID:
p. 145-159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Centriole copy number is tightly maintained by the once‐per‐cycle duplication of these organelles. Centrioles constitute the core of centrosomes, which organize the microtubule cytoskeleton and form the poles of the mitotic spindle. Centrosome amplification is frequently observed in tumors, where it promotes aneuploidy and contributes to invasive phenotypes. In non‐transformed cells, centrosome amplification triggers PIDDosome activation as a protective response to inhibit cell proliferation, but how extra centrosomes activate the PIDDosome remains unclear. Using a genome‐wide screen, we identify centriole distal appendages as critical for PIDDosome activation in cells with extra centrosomes. The distal appendage protein ANKRD26 is found to interact with and recruit the PIDDosome component PIDD1 to centriole distal appendages, and this interaction is required for PIDDosome activation following centrosome amplification. Furthermore, a recurrent ANKRD26 mutation found in human tumors disrupts PIDD1 localization and PIDDosome activation in cells with extra centrosomes. Our data support a model in which ANKRD26 initiates a centriole‐derived signal to limit cell proliferation in response to centrosome amplification.

     
    more » « less
  2. Discher, Dennis (Ed.)
    Hydrodynamic flow produced by multiciliated cells is critical for fluid circulation and cell motility. Hundreds of cilia beat with metachronal synchrony for fluid flow. Cilia-driven fluid flow produces extracellular hydrodynamic forces that cause neighboring cilia to beat in a synchronized manner. However, hydrodynamic coupling between neighboring cilia is not the sole mechanism that drives cilia synchrony. Cilia are nucleated by basal bodies (BBs) that link to each other and to the cell’s cortex via BB-associated appendages. The intracellular BB and cortical network is hypothesized to synchronize ciliary beating by transmitting cilia coordination cues. The extent of intracellular ciliary connections and the nature of these stimuli remain unclear. Moreover, how BB connections influence the dynamics of individual cilia has not been established. We show by focused ion beam scanning electron microscopy imaging that cilia are coupled both longitudinally and laterally in the ciliate Tetrahymena thermophila by the underlying BB and cortical cytoskeletal network. To visualize the behavior of individual cilia in live, immobilized Tetrahymena cells, we developed Delivered Iron Particle Ubiety Live Light (DIPULL) microscopy. Quantitative and computer analyses of ciliary dynamics reveal that BB connections control ciliary waveform and coordinate ciliary beating. Loss of BB connections reduces cilia-dependent fluid flow forces. 
    more » « less
  3. Background

    Mucociliary clearance is a main defense mechanism of the airway and is impaired in ciliary dyskinesia. The objective of this study was to evaluate the prevalence of chronic rhinosinusitis (CRS) and its characteristics in bronchiectasis patients suspected of harboring ciliary dyskinesia.

    Methods

    Bronchiectasis patients referred to a rhinology clinic for nasal brush biopsy (NBB) were included in this study. NBB was performed using a curettage technique whereby ciliated epithelial cells were obtained from the surface of the inferior nasal turbinate. Results of transmission electron microscopy findings, primary ciliary dyskinesia (PCD) gene (35 genes) analyses (Invitae), and sinus computed tomography (CT) scans were reviewed.

    Results

    Twenty‐three patients (age, 54 ± 2.9 years) were referred for NBB between 2015 and 2018. Thirteen patients (56.5%) met the criteria for diagnosis of CRS. Nineteen patients had ciliary ultrastructural defects. The most common finding was compound cilia (n = 11, 47.8%). Five patients (21.7%) had central microtubule defects (CMD) with higher forced expiratory volume in 1 second (FEV1) at the time of referral than those without CMD (CMD+, 91 ± 3.7%; CMD, 73.5 ± 5.7%;p= 0.023). Of 15 subjects with a PCD gene panel, 67% (9 of 15) carried at least 1 gene associated with PCD. Only 1 patient reached diagnosis of PCD. Approximately 50% of non‐PCD carriers had a smoking history (p< 0.05). Lund‐Mackay scores did not significantly differ between PCD and non‐PCD carriers (p= 0.72).

    Conclusion

    Nearly half of bronchiectasis patients referred for NBB had concurrent CRS. The presence of ciliary abnormalities was not amplified in bronchiectasis patients with CRS compared to those without CRS. Extrinsic factors may be related to ciliary structural abnormalities in non‐PCD gene carriers.

     
    more » « less
  4. Abstract

    The use of oxygen by cells is an essential aspect of cell metabolism and a reliable indicator of viable and functional cells. Here, we report partial pressure oxygen (pO2) mapping of live cells as a reliable indicator of viable and metabolically active cells. For pO2imaging, we utilized trityl OX071-based pulse electron paramagnetic resonance oxygen imaging (EPROI), in combination with a 25 mT EPROI instrument, JIVA-25™, that provides 3D oxygen maps with high spatial, temporal, and pO2resolution. To perform oxygen imaging in an environment-controlled apparatus, we developed a novel multi-well-plate incubator-resonator (MWIR) system that could accommodate 3 strips from a 96-well strip-well plate and image the middle 12 wells noninvasively and simultaneously. The MWIR system was able to keep a controlled environment (temperature at 37 °C, relative humidity between 70%–100%, and a controlled gas flow) during oxygen imaging and could keep cells alive for up to 24 h of measurement, providing a rare previously unseen longitudinal perspective of 3D cell metabolic activities. The robustness of MWIR was tested using an adherent cell line (HEK-293 cells), a nonadherent cell line (Jurkat cells), a cell-biomaterial construct (Jurkat cells seeded in a hydrogel), and a negative control (dead HEK-293 cells). For the first time, we demonstrated that oxygen concentration in a multi-well plate seeded with live cells reduces exponentially with the increase in cell seeding density, even if the cells are exposed to incubator-like gas conditions. For the first time, we demonstrate that 3D, longitudinal oxygen imaging can be used to assess cells seeded in a hydrogel. These results demonstrate that MWIR-based EPROI is a versatile and robust method that can be utilized to observe the cell metabolic activity nondestructively, longitudinally, and in 3D. This approach may be useful for characterizing cell therapies, tissue-engineered medical products, and other advanced therapeutics.

     
    more » « less
  5. Semrau, Jeremy D. (Ed.)
    ABSTRACT Dehalococcoides mccartyi ( Dhc ) and Dehalogenimonas spp. ( Dhgm ) are members of the class Dehalococcoidia , phylum Chloroflexi, characterized by streamlined genomes and a strict requirement for organohalogens as electron acceptors. Here, we used cryo-electron tomography to reveal morphological and ultrastructural features of Dhc strain BAV1 and “ Candidatus Dehalogenimonas etheniformans” strain GP cells at unprecedented resolution. Dhc cells were irregularly shaped discs (890 ± 110 nm long, 630 ± 110 nm wide, and 130 ± 15 nm thick) with curved and straight sides that intersected at acute angles, whereas Dhgm cells appeared as slightly flattened cocci (760 ± 85 nm). The cell envelopes were composed of a cytoplasmic membrane (CM), a paracrystalline surface layer (S-layer) with hexagonal symmetry and ∼22-nm spacing between repeating units, and a layer of unknown composition separating the CM and the S-layer. Cell surface appendages were only detected in Dhc cells, whereas both cell types had bundled cytoskeletal filaments. Repetitive globular structures, ∼5 nm in diameter and ∼9 nm apart, were observed associated with the outer leaflet of the CM. We hypothesized that those represent organohalide respiration (OHR) complexes and estimated ∼30,000 copies per cell. In Dhgm cultures, extracellular lipid vesicles (20 to 110 nm in diameter) decorated with putative OHR complexes but lacking an S-layer were observed. The new findings expand our understanding of the unique cellular ultrastructure and biology of organohalide-respiring Dehalococcoidia . IMPORTANCE Dehalococcoidia respire organohalogen compounds and play relevant roles in bioremediation of groundwater, sediments, and soils impacted with toxic chlorinated pollutants. Using advanced imaging tools, we have obtained three-dimensional images at macromolecular resolution of whole Dehalococcoidia cells, revealing their unique structural components. Our data detail the overall cellular shape, cell envelope architecture, cytoskeletal filaments, the likely localization of enzymatic complexes involved in reductive dehalogenation, and the structure of extracellular vesicles. The new findings expand our understanding of the cell structure-function relationship in Dehalococcoidia with implications for Dehalococcoidia biology and bioremediation. 
    more » « less