Almost half of the Greenland ice sheet's mass loss occurs through iceberg calving at marine terminating glaciers. The presence of buoyant subglacial discharge plumes at these marine termini are thought to increase mass loss both through submarine melting and by undercutting that consequently increases calving rates. Plume models are used to predict submarine melting and undercutting. However, there are few observations that allow these relationships to be tested. Here, we use airborne lidar from the terminus of Helheim Glacier, SE Greenland to measure the bulge induced at the surface by the upwelling plume. We use these measurements to estimate plume discharge rates using a high‐resolution, three‐dimensional plume model. Multiyear observations of the plume are compared to a record of calving from camera and icequake data. We find no evidence to suggest that the presence of a plume, determined by its visibility at the surface, increases the frequency of major calving events and also show that mass loss at the terminus driven directly by plume discharge is significantly less than mass loss from major calving events. The results suggest that the contribution of direct plume‐driven mass loss at deep marine‐terminating glaciers may be less than at shallower termini.
Submarine melting and iceberg calving are two important processes that control mass loss from the terminus of tidewater glaciers. There have been significant efforts to quantify the effect of submarine melting on glacier calving, but controversy remains with conflicting studies indicating submarine melting can increase, decrease, or has minimal effect on calving. Here we show using a two‐dimensional full Stokes finite element model that submarine melt can alter the state of stress near the terminus and the changes in stress exert a first‐order control on the calving regime of marine terminating glaciers. The model calculates both the largest principal and maximum shear stresses and then maps out where tensile and shear failure occur for a range of melt rates and vertical melt profiles. We find that submarine melt initially promotes full thickness calving events. However, as the melt rate further increases, an overhang begins to form and resulting compressive stresses suppress full thickness calving. These results are relatively insensitive to basal friction. Moreover, our results suggest that submarine melting can both increase and decrease calving rates with the magnitude and sign of the effect determined by the shape of the melt profile and the relative magnitude of average melt rate. Despite the fact that calving is suppressed in some circumstances, the addition of submarine melt almost always increases the total mass loss. Overall, we find that relatively small amounts of submarine melt can destabilize glaciers, but calving and frontal ablation are increasingly controlled by submarine melt as it continues to increase.
more » « less- PAR ID:
- 10459619
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 124
- Issue:
- 2
- ISSN:
- 2169-9003
- Page Range / eLocation ID:
- p. 334-346
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Quantifying the impact of submarine melting on calving is central to understanding the response of marine‐terminating glaciers to ocean forcing. Modeling and observational studies suggest the potential for submarine melting to amplify calving (the calving multiplier effect), but there is little consensus as to under what conditions this occurs. Here, by viewing a marine‐terminating glacier as an elastic beam, we propose an analytical basis for understanding the presence or absence of the calving multiplier effect. We show that as a terminus becomes undercut it becomes more susceptible to both serac failure (calving only of ice that is undercut, driven by vertical imbalance) and rotational failure (full‐thickness calving of ice behind the grounding line, driven by rotational imbalance). By deriving analytical stress thresholds for these two forms of calving, we suggest that the dominant of the two calving styles is determined principally by the shape of melt‐undercutting. Uniform undercutting extending from the bed to the waterline promotes serac failure and no multiplier effect, while glaciers experiencing linear undercutting that is greatest at the bed and zero at the waterline are more likely to experience rotational failure and a multiplier effect. Our study offers a quantitative framework for understanding where and when the calving multiplier effect occurs, and, therefore, a route to parameterizing the effect in ice sheet‐scale models.
-
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Abstract. Field and remote sensing studies suggest that ice mélange influences glacier-fjord systems by exerting stresses on glacier termini and releasing large amounts of freshwater into fjords. The broader impacts of ice mélange over long time scales are unknown, in part due to a lack of suitable ice mélange flow models. Previous efforts have included modifying existing viscous ice shelf models, despite the fact that ice mélange is fundamentally a granular material, and running computationally expensive discrete element simulations. Here, we draw on laboratory studies of granular materials, which exhibit viscous flow when stresses greatly exceed the yield point, plug flow when the stresses approach the yield point, and stress transfer via force chains. By implementing the nonlocal granular fluidity rheology into a depth- and width-integrated stress balance equation, we produce a numerical model of ice mélange flow that is consistent with our understanding of well-packed granular materials and that is suitable for long time-scale simulations. For parallel-sided fjords, the model exhibits two possible steady state solutions. When there is no calving of new icebergs or melting of previously calved icebergs, the ice mélange is pushed down fjord by the advancing glacier terminus, the velocity is constant along the length of the fjord, and the thickness profile is exponential. When calving and melting are included, the ice mélange evolves to another steady state in which its location is fixed relative to the fjord walls, the thickness profile is relatively steep, and the flow is extensional. For the latter case, the model predicts that the steady-state ice mélange buttressing force depends on the surface and basal melt rates through an inverse power law relationship, decays roughly exponentially with both fjord width and gradient in fjord width, and increases with the iceberg calving flux. The increase in buttressing force with the calving flux, which depends on glacier thickness, appears to occur more rapidly than the force required to prevent the capsize of full-glacier-thickness icebergs, suggesting that glaciers with high calving fluxes may be more strongly influenced by ice mélange than those with small fluxes.
-
Abstract. The effect of the North Atlantic Ocean on the Greenland Ice Sheet through submarine melting of Greenland's tidewater glacier calving fronts is thought to be a key driver of widespread glacier retreat, dynamic mass loss and sea level contribution from the ice sheet. Despite its critical importance, problems of process complexity and scale hinder efforts to represent the influence of submarine melting in ice-sheet-scale models. Here we propose parameterizing tidewater glacier terminus position as a simple linear function of submarine melting, with submarine melting in turn estimated as a function of subglacial discharge and ocean temperature. The relationship is tested, calibrated and validated using datasets of terminus position, subglacial discharge and ocean temperature covering the full ice sheet and surrounding ocean from the period 1960–2018. We demonstrate a statistically significant link between multi-decadal tidewater glacier terminus position change and submarine melting and show that the proposed parameterization has predictive power when considering a population of glaciers. An illustrative 21st century projection is considered, suggesting that tidewater glaciers in Greenland will undergo little further retreat in a low-emission RCP2.6 scenario. In contrast, a high-emission RCP8.5 scenario results in a median retreat of 4.2 km, with a quarter of tidewater glaciers experiencing retreat exceeding 10 km. Our study provides a long-term and ice-sheet-wide assessment of the sensitivity of tidewater glaciers to submarine melting and proposes a practical and empirically validated means of incorporating ocean forcing into models of the Greenland ice sheet.more » « less
-
Abstract Marine-terminating glaciers lose mass through melting and iceberg calving, and we find that meltwater drainage systems influence calving timing at Helheim Glacier, a tidewater glacier in East Greenland. Meltwater feeds a buoyant subglacial discharge plume at the terminus of Helheim Glacier, which rises along the glacial front and surfaces through the mélange. Here, we use high-resolution satellite and time-lapse imagery to observe the surface expression of this meltwater plume and how plume timing and location compare with that of calving and supraglacial meltwater pooling from 2011 to 2019. The plume consistently appeared at the central terminus even as the glacier advanced and retreated, fed by a well-established channelized drainage system with connections to supraglacial water. All full-thickness calving episodes, both tabular and non-tabular, were separated from the surfacing plume by either time or by space. We hypothesize that variability in subglacial hydrology and basal coupling drive this inverse relationship between subglacial discharge plumes and full-thickness calving. Surfacing plumes likely indicate a low-pressure subglacial drainage system and grounded terminus, while full-thickness calving occurrence reflects a terminus at or close to flotation. Our records of plume appearance and full-thickness calving therefore represent proxies for the grounding state of Helheim Glacier through time.more » « less