skip to main content

Title: Minimal mortality and rapid recovery of the dominant shrub Larrea tridentata following an extreme cold event in the northern Chihuahuan Desert
Abstract Questions

Woody encroachment into grasslands is a worldwide phenomenon partially influenced by climate change, including extreme weather events.Larrea tridentatais a common shrub throughout the warm deserts of North America that has encroached into grasslands over the past 150 years. Physiological measurements suggest that the northern distribution ofL. tridentatais limited by cold temperatures; thus extreme winter events may slow or reverse shrub expansion. We tested this limitation by measuring the response of individualL. tridentatashrubs to an extreme winter cold (−31°C) event to assess shrub mortality and rate of recovery of surviving shrubs.


Sevilleta National Wildlife Refuge, Socorro County, New Mexico, USA.


Canopy dieback and recovery following an extreme cold event were measured for 869 permanently marked individualL. tridentatashrubs in grass–shrub ecotone and shrubland sites. Individual shrubs were monitored for amount of canopy dieback, rate of recovery, and seed set for three growing seasons after the freeze event.


Shrubs rapidly suffered a nearly complete loss of canopy leaf area across all sites. Although canopy loss was high, mortality was low and 99% of shrubs resprouted during the first growing season after the freeze event. Regrowth rates were similar within ecotone and shrubland sites, even when damage by frost was larger in the latter. After three years of recovery,L. tridentatacanopies had regrown on average 23–83% of the original pre‐freeze canopy sizes across the sites.


We conclude that isolated extreme cold events may temporarily decrease shrubland biomass but they do not slow or reverse shrub expansion. These events are less likely to occur in the future as regional temperatures increase under climate change.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Journal of Vegetation Science
Page Range / eLocation ID:
p. 963-972
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aims

    Grassland-to-shrubland transition is a common form of land degradation in drylands worldwide. It is often attributed to changes in disturbance regimes, particularly overgrazing. A myriad of direct and indirect effects (e.g., accelerated soil erosion) of grazing may favor shrubs over grasses, but their relative importance is unclear. We tested the hypothesis that topsoil “winnowing” by wind erosion would differentially affect grass and shrub seedling establishment to promote shrub recruitment over that of grass.


    We monitored germination and seedling growth of contrasting perennial grass (Bouteloua eriopoda,Sporobolus airoides, andAristida purpurea) and shrub (Prosopis glandulosa,Atriplex canescens, andLarrea tridentata) functional groups on field-collected non-winnowed and winnowed soils under well-watered greenhouse conditions.


    Non-winnowed soils were finer-textured and had higher nutrient contents than winnowed soils, but based on desorption curves, winnowed soils had more plant-available moisture. Contrary to expectations, seed germination and seedling growth on winnowed and non-winnowed soils were comparable within a given species. The N2-fixing deciduous shrubP. glandulosawas first to emerge and complete germination, and had the greatest biomass accumulation of all species.


    Germination and early seedling growth of grasses and shrubs on winnowed soils were not adversely nor differentially affected comparing with that observed on non-winnowed soils under well-watered greenhouse conditions. Early germination and rapid growth may giveP. glandulosaa competitive advantage over grasses and other shrub species at the establishment stage in grazed grasslands. Field establishment experiments are needed to confirm our findings in these controlled environment trials.

    more » « less
  2. Abstract

    Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long‐term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire‐excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old‐growth grasslands to serve as reference sites. Herbaceous‐layer plant communities in all experimental sites were compositionally and functionally distinct from old‐growth grasslands, with little recovery of perennial C4grasses and long‐lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot‐level plant species richness (range 89–95 species/1000 m2). At the local‐scale, summer sites (23 species/m2) and old‐growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old‐growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grassBothriochloa ischaemumby maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlledB. ischaemuminvasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old‐growth grassland community composition. Nonetheless, this long‐term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research.

    more » « less
  3. Abstract

    The encroachment of woody plants into grasslands is a global phenomenon with implications for biodiversity and ecosystem function. Understanding and predicting the pace of expansion and the underlying processes that control it are key challenges in the study and management of woody encroachment. Theory from spatial population biology predicts that the occurrence and speed of expansion should depend sensitively on the nature of conspecific density dependence. If fitness is maximized at the low‐density encroachment edge, then shrub expansion should be “pulled” forward. However, encroaching shrubs have been shown to exhibit positive feedbacks, whereby shrub establishment modifies the environment in ways that facilitate further shrub recruitment and survival. In this case there may be a fitness cost to shrubs at low density causing expansion to be “pushed” from behind the leading edge. We studied the spatial dynamics of creosotebush (Larrea tridentata), which has a history of encroachment into Chihuahuan Desert grasslands over the past century. We used demographic data from observational censuses and seedling transplant experiments to test the strength and direction of density dependence in shrub fitness along a gradient of shrub density at the grass–shrub ecotone. We also used seed‐drop experiments and wind data to construct a mechanistic seed‐dispersal kernel, then connected demography and dispersal data within a spatial integral projection model (SIPM) to predict the dynamics of shrub expansion. Contrary to expectations based on potential for positive feedbacks, the shrub encroachment wave is “pulled” by maximum fitness at the low‐density front. However, the predicted pace of expansion was strikingly slow (ca. 8 cm/year), and this prediction was supported by independent resurveys of the ecotone showing little to no change in the spatial extent of shrub cover over 12 years. Encroachment speed was acutely sensitive to seedling recruitment, suggesting that this population may be primed for pulses of expansion under conditions that are favorable for recruitment. Our integration of observations, experiments, and modeling reveals not only that this ecotone is effectively stalled under current conditions but also why that is so and how that may change as the environment changes.

    more » « less
  4. Abstract

    Improving models of community change is a fundamental goal in ecology and has renewed importance during global change and increasing human disturbance of the biosphere. Using the Mojave Desert (southwestern United States) as a model system, invaded by nonnative plants and subject to wildfire disturbances, we examined models of resilience, alternative stable states, and convergent‐divergent trajectories for 36 yr of plant community change after 31 wildfires in communities dominated by the native shrubsLarrea tridentataorColeogyne ramosissima. Perennial species richness on average was fully resilient within 23 yr after disturbance in both community types. Perennial cover was fully resilient within 25 yr in theLarreacommunity, but recovery was projected to require 52 yr in theColeogynecommunity. Species composition shifts were persistent, and in theColeogynecommunity, the projected compositional recovery time of 550 yr and increasing resembled a deflected trajectory toward potential alternative states. Disturbed sites contained a perennial species composition of predominately short‐statured forbs, subshrubs, and grasses, contrasting with the larger‐statured shrub and tree structure of undisturbed sites. Auxiliary data sets characterizing species recruitment, annual plants including nonnative grasses, biocrust communities, and soils showed persistent differences between disturbed and undisturbed sites consistent with positive feedbacks potentially contributing to alternative stable states. Resprouting produced limited resilience for the large shrubsL. tridentataandYuccaspp. important to population persistence but did not forestall long‐term reduced abundance of the species. The nonnative annual grassBromus rubensincreased on disturbed sites over time, suggesting persistently abundant nonnative plant fuels and reburn potential. Biocrust cover on disturbed sites was half and species richness a third of amounts on undisturbed sites. Soil nitrogen was 30% greater on disturbed sites and no significant trend was evident for it to decline on even the oldest burns. Disturbed desert plant communities simultaneously supported all three models of resilience, alternative stable states, and convergent‐divergent trajectories among community measures (e.g., species richness, composition), timeframes since disturbance, and spatial resolutions. Accommodating expression within ecosystems of multiple models, including those opposing each other, may help broaden theoretical models of ecosystem change.

    more » « less
  5. Abstract

    Hotter, longer, and more frequent global change‐type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought‐induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean‐type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multiyear drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water‐use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation‐type conversion.

    more » « less