skip to main content


Title: The Influence of Foreland Structures on Hinterland Cooling: Evaluating the Drivers of Exhumation in the Eastern Bhutan Himalaya
Abstract

Understanding, and ideally quantifying, the relative roles of climatic and tectonic processes during orogenic exhumation is critical to resolving the dynamics of mountain building. However, vastly differing opinions regarding proposed drivers often complicate how thermochronometric ages are interpreted, particularly from the hinterland portions of thrust belts. Here we integrate three possible cross‐section geometries and kinematics along a transect through the eastern Bhutan Himalaya with a thermal model (Pecube‐D) to calculate the resulting thermal field and predict potential ages. We compare predicted ages to a suite of new and published cooling ages. Our results argue for ramp‐focused exhumation of the Main Central thrust from 16 to 14 Ma at shortening rates of 40–55 mm/year, followed by slower rates (25 mm/year) during the last 50 km of Main Central thrust displacement and growth of the Lesser Himalayan duplex from 14 to 11 Ma. Emplacement of frontal Lesser Himalayan thrust sheets occurred rapidly (55–70 mm/year) between ~11 and 9 Ma, followed by a decrease in shortening rates to ~10 mm/year during motion on the Main Boundary thrust. Modern shortening rates (17 mm/year) and out‐of‐sequence motion on the Main Boundary thrust from 0.5 Ma to present reproduce the young cooling ages near the Main Boundary thrust. We show that the dominant control on exhumation patterns in a fold‐thrust belt results from the evolution of ramps and emphasize that the geometry and kinematics of structures driving hinterland exhumation need to be evaluated with their linked foreland structures to ensure the viability of the proposed geometry, kinematics, and thus cooling history.

 
more » « less
NSF-PAR ID:
10459640
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Tectonics
Volume:
38
Issue:
9
ISSN:
0278-7407
Page Range / eLocation ID:
p. 3282-3310
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Exhumation and cooling pathways of mid‐crustal metamorphic rocks in the western Nepal Himalaya can be replicated by fold‐thrust belt structures with displacement localized along discrete décollements. New and published muscovite40Ar/39Ar, zircon U‐Th/He, and apatite fission track cooling ages, peak temperature estimates, geologic mapping, and basin data are integrated with thermokinematic forward models to constrain the geometry, kinematics, and rates of shortening in far western Nepal. The best fit to peak temperatures, cooling ages, and basin accumulation data is achieved with a largely in‐sequence kinematic order, with out‐of‐sequence motion on the Ramgarh‐Munsiari thrust. Fast rates (∼20–40 mm/yr) are required during shortening on early, large displacement faults at ∼23–12 Ma and decrease to ∼10–15 mm/yr during formation of the Lesser Himalayan duplex until ∼1 Ma. Thermokinematic models highlight the relationship between peak temperature, geometry, and shortening on the large displacement Main Central and Ramgarh‐Munsiari thrusts. In the thermokinematic models, we observe a relationship between the location of frontal ramps for the faults that displace lower Lesser Himalayan units and the ∼375°C isotherm, immediately before the ramp becomes active. These correlations suggest that temperature exerts a first‐order control on thrust geometry in a hot orogen. Viable models highlight the position of active ramps, kinematic order of faults, timing of fault motion, and reduction in shortening rates that are required to reproduce the surface geology, basin accumulation, peak temperature conditions, and timing of exhumation. Cooling ages are far more sensitive to the age of fault motion than the rate of fault motion.

     
    more » « less
  2. Abstract

    Constraining the subsurface structural geometry of the central Himalaya continues to prove difficult, even after the 2015 Gorkha earthquake and the resulting insights into the trajectory of the Main Himalayan thrust (MHT). To this end, we apply a thermokinematic model to evaluate four possible balanced cross section geometries based on three estimates of the MHT in central Nepal. We compare the effect of different décollement and duplex geometries on predicted cooling ages and compare these to new and published ages. We find that the best‐fit geometry able to reproduce the cooling ages at the surface is a hinterland‐dipping duplex, which has been translated over a mid‐crustal ramp located ~110 km north of the Main Frontal thrust. We find that the temporal evolution of the duplex and MHT mid‐crustal ramp both play an integral role in producing the observed cooling ages, implying that the common assumption that the active décollement and ramp geometry solely control the distribution of cooling ages is incorrect. Furthermore, results indicate that the Ramgarh‐Munsiari thrust was emplaced between 17 and ~10 Ma, followed by the Trishuli thrust. Duplex growth occurs between 6.5 and 0.75 Ma, with its constituent thrust sheets moving at variable rates between 10 and 42 mm/yr. Young out‐of‐sequence thrusting (5 km of displacement) in the hinterland produces a slightly improved fit to the cooling ages. Finally, the resulting thermal field modeled from our best‐fit geometry suggests a possible basis for the nucleation and rupture characteristics of the Gorkha earthquake.

     
    more » « less
  3. Abstract

    New data from the lower Miocene Dumri Formation of western Nepal document exhumation of the Himalayan fold‐thrust belt and provenance of the Neogene foreland basin system. We employ U‐Pb zircon, Th‐Pb monazite,40Ar/39Ar white mica, and zircon fission track chronometers to detrital minerals to constrain provenance, timing, and rate of exhumation of Himalayan source regions. Clusters of Proterozoic–early Paleozoic (900–400 Ma) Th‐Pb monazite and40Ar/39Ar white mica detrital ages provide evidence for erosion of a Greater Himalayan sequence protolith unaffected by high‐grade Eohimalayan metamorphism. A small population of ~40 Ma cooling ages in detrital white mica grains shows exhumation of low‐grade metamorphic Tethyan Himalayan sequence through the ~350 °C closure temperature along the Tethyan Frontal thrust (proto‐South Tibetan detachment) during the late Eocene. Dumri Formation detritus shows a ~12 Myr time difference between cooling of its source rocks through the ~350 and ~240 °C closure temperatures as recorded by ~40–38 Ma youngest peak cooling ages in40Ar/39Ar detrital white mica and ~28–24 Ma youngest populations in detrital zircon fission track. Exhumation between circa 40 and 28 Ma is consistent with slip and exhumation along the Main Central Thrust. Combined with similar data from northwestern India, our study suggests west‐to‐east spatially variable exhumation rates along strike of the Main Central Thrust. Our data also show an increase in exhumation during middle Miocene–Pliocene time, which is consistent with growth of the Lesser Himalaya duplex.

     
    more » « less
  4. The potential structural controls on exhumation across the southern Peruvian Andes are not well understood, in part due to limited structural studies that co-locate with thermochronometric datasets. We integrate these two datasets and evaluate the relative contribution that fault geometry, magnitude, and shortening rate have on predicted cooling ages. Here we present a balanced cross-section constructed using new structural observations. This section, combined with existing thermochronometer data and a thermokinematic model, investigates the drivers of high exhumation and young canyon thermochronometric ages along the deeply incised Marcapata canyon in southern Peru. Together, these approaches constrain the timing and magnitude of exhumation in this portion of the southern Peruvian Andes and provide a mechanism for documenting how the internal architecture changes along strike. The balanced cross-section (oriented N30E) covers the Subandean Zone to the northeast, the Marcapata canyon on the eastern flank of the southern Peruvian Andes, and the Altiplano-Eastern Cordillera boundary to the southwest (13–18◦ S). Exhumation is constrained by four low-temperature thermochronometer systems, including apatite and zircon (U-Th)/He (AHe and ZHe, respectively) and fission-track (AFT and ZFT, respectively). The youngest AHe (∼1–3 Ma), AFT (∼3–7 Ma), ZHe (∼4–7 Ma), and ZFT (∼14–17 Ma) ages are located in the center and valley bottom of the Marcapata canyon. The thermokinematically modeled cross-section produces cooling ages determined by fault geometry and kinematics. Reset ZFT ages require burial of Ordovician rocks in excess of 5.5 km above the original 6.5 km depositional depth. We find that the ZFT and ZHe ages in the Eastern Cordillera are sensitive to the history and magnitude of burial, age and location of uplift, and canyon incision. Canyon incision is required to reproduce the youngest canyon thermochronometric ages while slow shortening rates from ∼10 Ma to Present are required to reproduce interfluve thermochronometric ages. Shortening is accommodated by basement faults that feed slip up through three different décollement levels before reaching the surface. The proposed stacked basement geometry sets the first-order cooling signal seen in modeled ages. We determined that the total shortening in this section from the Subandean Zone to the Altiplano is 147.5 km, similar to shortening estimates in an adjacent thermo-kinematically modeled section in the San Gabán canyon 50 km to the southeast. Both the ZHe and ZFT ages in the Marcapata section (4–5 and 14 Ma) are noticeably younger than cooling ages from the San Gabán section (16 and 29 Ma). The Marcapata section’s higher magnitude of exhumation is due to a repetition of basement thrusts that continues to elevate the Eastern Cordillera while active deformation occurs in the Subandean Zone. The youngest thermochronometric ages in all four systems are co-located with the overlapping basement thrust geometry. This basement geometry, kinematic sequence of deformation, and canyon incision co-conspire to produce the young cooling ages observed in the Eastern Cordillera. 
    more » « less
  5. Abstract

    The kinematic and exhumational evolution of the Lesser Himalaya (LH) remains a topic of debate. In NW India, the stratigraphically diverse LH is separated into the inner LH (iLH) of late Paleo‐Mesoproterozoic rocks and the outer LH (oLH) of Cryogenian to Cambrian rocks. Contradictory models regarding the age and structural affinity of the Tons thrust—a prominent structure bounding the oLH and iLH—are grounded in conflicting positions of the oLH prior to Himalayan orogenesis. This study presents new zircon (U‐Th)/He and U‐Pb ages from the thrust belt and foreland basin of NW India that refine the kinematic and exhumational evolution of the LH. Combined cooling ages and foreland provenance data support emplacement and unroofing of the oLH via southward in‐sequence propagation of the Tons thrust by middle Miocene time. This requires that, before India–Asia collision, the oLH was positioned as the southernmost succession of Neoproterozoic–Cambrian strata along the north Indian margin. This is further supported by detrital zircon U‐Pb ages from Cretaceous–Paleogene strata (Singtali Formation) unconformably overlying the oLH, which yield diagnostic Cretaceous detrital zircons correlative with coeval strata in the frontal Himalaya of Nepal. A pulse of rapid exhumation along the Tons thrust front at ~16 Ma was followed by east‐to‐west development of a midcrustal ramp at ~12 Ma which facilitated diachronous iLH duplexing. This duplexing shifted the locus of maximum exhumation northward, eroding away Main Central Thrust hanging wall rocks until the iLH breached the surface at ~9–11 Ma near Nepal and by ~3–7 Ma within the Kullu‐Rampur window.

     
    more » « less