skip to main content


Title: Multi‐dimensional biodiversity hotspots and the future of taxonomic, ecological and phylogenetic diversity: A case study of North American rodents
Abstract Aim

We investigate geographic patterns across taxonomic, ecological and phylogenetic diversity to test for spatial (in)congruency and identify aggregate diversity hotspots in relationship to present land use and future climate. Simulating extinctions of imperilled species, we demonstrate where losses across diversity dimensions and geography are predicted.

Location

North America.

Time period

Present day, future.

Major taxa studied

Rodentia.

Methods

Using geographic range maps for rodent species, we quantified spatial patterns for 11 dimensions of diversity: taxonomic (species, range weighted), ecological (body size, diet and habitat), phylogenetic (mean, variance, and nearest‐neighbour patristic distances, phylogenetic distance and genus‐to‐species ratio) and phyloendemism. We tested for correlations across dimensions and used spatial residual analyses to illustrate regions of pronounced diversity. We aggregated diversity hotspots in relationship to predictions of land‐use and climate change and recalculated metrics following extinctions of IUCN‐listed imperilled species.

Results

Topographically complex western North America hosts high diversity across multiple dimensions: phyloendemism and ecological diversity exceed predictions based on taxonomic richness, and phylogenetic variance patterns indicate steep gradients in phylogenetic turnover. An aggregate diversity hotspot emerges in the west, whereas spatial incongruence exists across diversity dimensions at the continental scale. Notably, phylogenetic metrics are uncorrelated with ecological diversity. Diversity hotspots overlap with land‐use and climate change, and extinctions predicted by IUCN status are unevenly distributed across space, phylogeny or ecological groups.

Main conclusions

Comparison of taxonomic, ecological and phylogenetic diversity patterns for North American rodents clearly shows the multifaceted nature of biodiversity. Testing for geographic patterns and (in)congruency across dimensions of diversity facilitates investigation into underlying ecological and evolutionary processes. The geographic scope of this analysis suggests that several explicit regional challenges face North American rodent fauna in the future. Simultaneous consideration of multi‐dimensional biodiversity allows us to assess what critical functions or evolutionary history we might lose with future extinctions and maximize the potential of our conservation efforts.

 
more » « less
Award ID(s):
1655720
NSF-PAR ID:
10459657
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
29
Issue:
3
ISSN:
1466-822X
Page Range / eLocation ID:
p. 516-533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    The biodiversity crisis has highlighted the need to assess and map biodiversity in order to prioritize conservation efforts. Clearwing butterflies (tribe Ithomiini) have been proposed as biological indicators for habitat quality in Neotropical forests, which contain the world's richest biological communities. Here, we provide maps of different facets of Ithomiini diversity across the Neotropics to identify areas of evolutionary and ecological importance for conservation and evaluate their overlap with current anthropogenic threats.

    Location

    Neotropics.

    Methods

    We ran species distribution models on a data set based on 28,986 georeferenced occurrences representing 388 ithomiine species to generate maps of geographic rarity, taxonomic, phylogenetic and Müllerian mimetic wing pattern diversity. We quantified and mapped the overlap of diversity hotspots with areas threatened by or providing refuge from current anthropogenic pressures.

    Results

    The eastern slopes of the Andes formed the primary hotspot of taxonomic, phylogenetic and mimetic diversity, with secondary hotspots in Central America and the Atlantic Forest. Most diversity indices were strongly spatially correlated. Nevertheless, species‐poor communities on the Pacific slopes of the Andes also sheltered some of the geographically rarest species. Overall, tropical montane forests that host high species and mimetic diversity as well as rare species and mimicry rings appeared particularly under threat.

    Main conclusions

    Remote parts of the Upper Amazon may act as refuges against current anthropogenic pressures for a limited portion of Ithomiini diversity. Furthermore, it is likely that the current threat status may worsen with ongoing climate change and deforestation. In this context, the tropical Andes occupy a crucial position as the primary hotspot for multiple facets of biodiversity for ithomiine butterflies, as they do for angiosperms, tetrapods and other insect taxa. Our results support the role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly diversity and reinforce the position of the tropical Andes as a flagship region for biodiversity conservation in general, and insect and butterfly conservation in particular.

     
    more » « less
  2. Abstract

    Assessments of spatial patterns of biodiversity change are essential to detect a signature of anthropogenic impacts, inform monitoring and conservation programs, and evaluate implications of biodiversity loss to humans. While taxonomic diversity (TD) is the most commonly assessed attribute of biodiversity, it misses the potential functional or phylogenetic implications of species losses or gains for ecosystems. Functional diversity (FD) and phylogenetic diversity (PD) are able to capture these important trait‐based and phylogenetic attributes of species, but their changes have to date only been evaluated over limited spatial and temporal extents. Employing a novel framework for addressing detectability, we here comprehensively assess a near half‐century of changes in localTD,FD, andPDof breeding birds across much of North America to examine levels of congruency in changes among these biodiversity facets and their variation across spatial and environmental gradients. Time‐series analysis showed significant and continuous increases in all three biodiversity attributes until ca. 2000, followed by a slow decline since. Comparison of avian diversity at the beginning and end of the temporal series revealed net increase inTD,FD, andPD, but changes inTDwere larger than those inFDandPD, suggesting increasing biotic homogenization of avian assemblages throughout the United States. Changes were greatest at high elevations and latitudes – consistent with purported effects of ongoing climate change on biodiversity. Our findings highlight the potential of combining new types of data with novel statistical models to enable a more integrative monitoring and assessment of the multiple facets of biodiversity.

     
    more » « less
  3. Abstract Aim

    With plant biodiversity under global threat, there is an urgent need to monitor the spatial distribution of multiple axes of biodiversity. Remote sensing is a critical tool in this endeavour. One remote sensing approach for detecting biodiversity is based on the hypothesis that the spectral diversity of plant communities is a surrogate of multiple dimensions of biodiversity. We investigated the generality of this ‘surrogacy’ for spectral, species, functional and phylogenetic diversity across 1,267 plots in the Greater Cape Floristic Region (GCFR), a hyper‐diverse region comprising several biomes and two adjacent global biodiversity hotspots.

    Location

    The GCFR centred in south‐western and western South Africa.

    Time period

    All data were collected between 1978–2014.

    Major taxa studied

    Vascular plants within the GCFR.

    Methods

    Spectral diversity was calculated using leaf reflectance spectra (450–950 nm) and was related to other dimensions of biodiversity via linear models. The accuracy of different spectral diversity metrics was compared using 10‐fold cross‐validation.

    Results

    We found that a distance‐based spectral diversity metric was a robust predictor of species, functional and phylogenetic biodiversity. This result serves as a proof‐of‐concept that spectral diversity is a potential surrogate of biodiversity across a hyper‐diverse biogeographic region. While our results support the generality of spectral diversity as a biodiversity surrogate, we also find that relationships vary between different geographic subregions and biomes, suggesting that differences in broad‐scale community composition can affect these relationships.

    Main conclusions

    Spectral diversity was shown to be a robust surrogate of multiple dimensions of biodiversity across biomes and a widely varying biogeographic region. We also extend these surrogacy relationships to ecological redundancy to demonstrate the potential for additional insights into community structure based on spectral reflectance.

     
    more » « less
  4. Abstract Motivation

    Biodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region.

    Main Types of Variable Contained

    Ecological, life‐history, morphological and geographical traits.

    Spatial Location and Grain

    Neotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions.

    Time Period and Grain

    IUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023.

    Major Taxa and Level of Measurement

    Classes Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals).

    Software Format

    .csv; R.

     
    more » « less
  5. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.

    Location

    Great Basin ecoregion, western North America.

    Taxon

    Rodents and shrews.

    Methods

    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.

    Results

    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

     
    more » « less