Early successional tropical forests could mitigate climate change via rapid accumulation of atmospheric carbon. However, liana (woody vine) abundance and biomass has been increasing in many tropical forests over the past decades, which may slow the speed at which secondary forests accumulate biomass. Lianas decrease biomass accumulation in tropical forests, and may have a particularly strong effect on young forests by stalling tree growth. As forests mature, trees may outgrow or shed lianas, thus escaping some of the negative effects of lianas. Alternatively, lianas may have the strongest effect in older successional forests if the effect of lianas is commensurate with their density, which increases dramatically in the first decades of forest succession. We tested these two hypotheses using a landscape liana‐removal experiment in 30 forest stands that ranged from 10 to 35 yr old in Central Panama. We measured tree growth and biomass accumulation in the stands every year from 2014 to 2017. We found that the effect of liana removal on large trees (≥20‐cm diameter) decreased with forest age, supporting the hypothesis that lianas have the strongest negative effects on trees, and thus biomass uptake and carbon storage, in very young successional forests. Large trees accumulated more biomass in the absence of lianas in younger forests than in older forests (compared to controls) even after accounting for the effect of canopy completeness and crown illumination, implying that the detrimental effects of lianas go well beyond resource availability and crown health. There was no significant effect of lianas on small trees (1–20‐cm diameter), likely because lianas seek light and thus do not deploy their leaves on small trees that are trapped in the forest understory. Our results show that high liana density early in forest succession reduces forest biomass accumulation by negatively impacting large trees, thus decreasing the capacity of young secondary forests to mitigate climate change. Although the negative effects of lianas on forest biomass diminish as forests age, they do not disappear, and thus lianas are an important component of tropical forest carbon budgets throughout succession.
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or more species in a single tree) was more frequent in control plots, where lianas were present, versus removal plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on arboreal ant communities in this early successional forest, where rapidly changing tree community structure was more important to ant species richness and composition.
more » « less- NSF-PAR ID:
- 10459683
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Biotropica
- Volume:
- 51
- Issue:
- 6
- ISSN:
- 0006-3606
- Page Range / eLocation ID:
- p. 885-893
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The well‐established pattern of forest thinning during succession predicts an increase in mean tree biomass with decreasing tree density. The forest thinning pattern is commonly assumed to be driven solely by tree‐tree competition. The presence of non‐tree competitors could alter thinning trajectories, thus altering the rate of forest succession and carbon uptake. We used a large‐scale liana removal experiment over 7 years in a 60‐ to 70‐year‐old Panamanian forest to test the hypothesis that lianas reduce the rate of forest thinning during succession. We found that lianas slowed forest thinning by reducing tree growth, not by altering tree recruitment or mortality. Without lianas, trees grew and presumably competed more, ultimately reducing tree density while increasing mean tree biomass. Our findings challenge the assumption that forest thinning is driven solely by tree‐tree interactions; instead, they demonstrate that competition from other growth forms, such as lianas, slow forest thinning and ultimately delay forest succession.
-
Abstract Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies—combinations of growth, mortality and recruitment rates—of the tree species in the community. However, our understanding of demographic diversity in tropical tree species stems almost exclusively from old‐growth forests. Here, we assembled demographic information from repeated forest inventories along chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico) Neotropical forests to assess whether the ranges of demographic strategies present in a community shift across succession. We calculated demographic rates for >500 tree species while controlling for canopy status to compare demographic diversity (i.e., the ranges of demographic strategies) in early successional (0–30 years), late successional (30–120 years) and old‐growth forests using two‐dimensional hypervolumes of pairs of demographic rates. Ranges of demographic strategies largely overlapped across successional stages, and early successional stages already covered the full spectrum of demographic strategies found in old‐growth forests. An exception was a group of species characterized by exceptionally high mortality rates that was confined to early successional stages in the two wet forests. The range of demographic strategies did not expand with succession. Our results suggest that studies of long‐term forest monitoring plots in old‐growth forests, from which most of our current understanding of demographic strategies of tropical tree species is derived, are surprisingly representative of demographic diversity in general, but do not replace the need for further studies in secondary forests.
-
Lianas Significantly Reduce Aboveground and Belowground Carbon Storage: A Virtual Removal ExperimentLianas are structural parasites of trees that cause a reduction in tree growth and an increase in tree mortality. Thereby, lianas negatively impact forest carbon storage as evidenced by liana removal experiments. In this proof-of-concept study, we calibrated the Ecosystem Demography model (ED2) using 3 years of observations of net aboveground biomass (AGB) changes in control and removal plots of a liana removal experiment on Gigante Peninsula, Panama. After calibration, the model could accurately reproduce the observations of net biomass changes, the discrepancies between treatments, as well as the observed components of those changes (mortality, productivity, and growth). Simulations revealed that the long-term total (i.e., above- and belowground) carbon storage was enhanced in liana removal plots (+1.2 kg C m –2 after 3 years, +1.8 kg C m –2 after 10 years, as compared to the control plots). This difference was driven by a sharp increase in biomass of early successional trees and the slow decomposition of liana woody tissues in the removal plots. Moreover, liana removal significantly reduced the simulated heterotrophic respiration (−24%), which resulted in an average increase in net ecosystem productivity (NEP) from 0.009 to 0.075 kg C m –2 yr –1 for 10 years after liana removal. Based on the ED2 model outputs, lianas reduced gross and net primary productivity of trees by 40% and 53%, respectively, mainly through competition for light. Finally, model simulations suggested a profound impact of the liana removal on the soil carbon dynamics: the simulated metabolic litter carbon pool was systematically larger in control plots (+51% on average) as a result of higher mortality rates and faster leaf and root turnover rates. By overcoming the challenge of including lianas and depicting their effect on forest ecosystems, the calibrated version of the liana plant functional type (PFT) as incorporated in ED2 can predict the impact of liana removal at large-scale and its potential effect on long-term ecosystem carbon storage.more » « less
-
Abstract Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity.
Abstract in Portuguese is available with online material.