Recent advances in soft sensors and flexible electronics offer various applications in detecting physical, electrical, and chemical signals. However, there are still technical barriers in current mechanical, electrical, and material properties for enhanced signal sensing. When measuring signals from the human skin, minimizing the skin‐sensor contact impedance is still challenging while maximizing sensitivity through optimized materials and soft electronics. Here, this review summarizes recent advances in materials, manufacturing, and integration technologies to develop ultrathin soft sensors for monitoring various human physiological signals. The enhancements in soft and compliant structures and mechanical properties are critical to making reliable wearable electronic systems. This article shares the details of soft sensors, integration processes, manufacturing methods, and their applications to target physical, electrical, and chemical signals. In addition, the limitations and current trends in developing multifunctional sensors, self‐powered devices, and integration with external stimuli systems are discussed.
Recent advances in flexible materials, nanomanufacturing, and system integration have provided a great opportunity to develop wearable flexible hybrid electronics for human healthcare, diagnostics, and therapeutics. However, existing medical devices still rely on rigid electronics with many wires and separate components, which hinders wireless, comfortable, continuous monitoring of health‐related human motions. Advanced materials and system integration technologies are introduced that enable soft, active wireless, thin‐film bioelectronics. This low‐modulus, highly flexible wearable electronic system incorporates a nanomembrane wireless circuit and functional chip components enclosed by a soft elastomeric membrane. It can be gently and seamlessly mounted on the skin, while offering comfortable, highly sensitive and accurate detection of head movements. The wireless, skin‐like bioelectronic system (SKINTRONICS) is utilized for quantitative diagnostics of cervical dystonia (CD), which is characterized by involuntary abnormal head postures and repetitive head movements, sometimes with neck muscle pain. A set of analytical and experimental studies shows a soft system packaging, hard–soft materials integration, and quantitative assessment of physiological signals detected by the SKINTRONICS. In vivo demonstration, involving 10 human subjects, finds the device feasible for use in CD measurement.
more » « less- PAR ID:
- 10459702
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 4
- Issue:
- 10
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Recent developments in stretchable electronics hold promise to advance wearable technologies for health monitoring. Emerging techniques allow soft materials to serve as substrates and packaging for electronics, enabling devices to comply with and conform to the body, unlike conventional rigid electronics. However, few stretchable electronic devices achieve the high integration densities that are possible using conventional substrates, such as printed rigid or flexible circuit boards. Here, a new manufacturing method is presented for wearable soft health monitoring devices with high integration densities. It is shown how to fabricate soft electronics on rigid carrier substrates using microfabrication techniques in tandem with strain relief features. Together, these make it possible to integrate a large variety of surface mount components in complex stretchable circuits on thin polymer substrates. The method is largely compatible with existing industrial manufacturing processes. The promise of these methods is demonstrated by realizing skin‐interfaced devices for multimodal physiological data capture via multiwavelength optoelectronic sensor arrays comprised of light emitting diodes and phototransistors. The devices provide high signal‐to‐noise ratio measurements of peripheral hemodynamics, illustrating the promise of soft electronics for wearable health monitoring applications.
-
Seismocardiography (SCG) is the measure of local vibrations in the chest due to heartbeats. Typically, SCG signals are measured using rigid integrated circuit (IC) accelerometers and bulky electronics. However, as alternatives, recent studies of emerging flexible sensors show promise. Here, we introduce the development of wireless soft capacitive sensors that require no battery or rigid IC components for measuring SCG signals for cardiovascular health monitoring. Both the capacitive and inductive components of the circuit are patterned with laser micromachining of a polyimide-coated copper and are encapsulated with an elastomer. The wearable soft sensor can detect small strain changes on the skin, which is wirelessly measured by examining the power reflected from the antenna at a stimulating frequency. The performance of the device is verified by comparing the fiducial points to SCG measured by a commercial accelerometer and electromyograms from a commercial electrode. Overall, the human subject study demonstrates that the fiducial points are consistent with data from commercial devices, showing the potential of the ultrathin soft sensors for ambulatory cardiovascular monitoring without bulky electronics and rigid components.more » « less
-
Abstract Wearable piezoresistive sensors are being developed as electronic skins (E‐skin) for broad applications in human physiological monitoring and soft robotics. Tactile sensors with sufficient sensitivities, durability, and large dynamic ranges are required to replicate this critical component of the somatosensory system. Multiple micro/nanostructures, materials, and sensing modalities have been reported to address this need. However, a trade‐off arises between device performance and device complexity. Inspired by the microstructure of the spinosum at the dermo epidermal junction in skin, a low‐cost, scalable, and high‐performance piezoresistive sensor is developed with high sensitivity (0.144 kPa‐1), extensive sensing range ( 0.1–15 kPa), fast response time (less than 150 ms), and excellent long‐term stability (over 1000 cycles). Furthermore, the piezoresistive functionality of the device is realized via a flexible transparent electrode (FTE) using a highly stable reduced graphene oxide self‐wrapped copper nanowire network. The developed nanowire‐based spinosum microstructured FTEs are amenable to wearable electronics applications.
-
Abstract Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor.