skip to main content

Title: Limitations of univariate linear bias correction in yielding cross‐correlation between monthly precipitation and temperature

Statistical bias correction techniques are commonly used in climate model projections to reduce systematic biases. Among the several bias correction techniques, univariate linear bias correction (e.g., quantile mapping) is the most popular, given its simplicity. Univariate linear bias correction can accurately reproduce the observed mean of a given climate variable. However, when performed separately on multiple variables, it does not yield the observed multivariate cross‐correlation structure. In the current study, we consider the intrinsic properties of two candidate univariate linear bias‐correction approaches (simple linear regression and asynchronous regression) in estimating the observed cross‐correlation between precipitation and temperature. Two linear regression models are applied separately on both the observed and the projected variables. The analytical solution suggests that two candidate approaches simply reproduce the cross‐correlation from the general circulation models (GCMs) in the bias‐corrected data set because of their linearity. Our study adopts two frameworks, based on the Fisherz‐transformation and bootstrapping, to provide 95% lower and upper confidence limits (referred as the permissible bound) for the GCM cross‐correlation. Beyond the permissible bound, raw/bias‐corrected GCM cross‐correlation significantly differs from those observed. Two frameworks are applied on three GCMs from the CMIP5 multimodel ensemble over the coterminous United States. We found that (a) the univariate linear techniques fail to reproduce the observed cross‐correlation in the bias‐corrected data set over 90% (30–50%) of the grid points where the multivariate skewness coefficient values are substantial (small) and statistically significant (statistically insignificant) from zero; (b) the performance of the univariate linear techniques under bootstrapping (Fisherz‐transformation) remains uniform (non‐uniform) across climate regions, months, and GCMs; (c) grid points, where the observed cross‐correlation is statistically significant, witness a failure fraction of around 0.2 (0.8) under the Fisherz‐transformation (bootstrapping). The importance of reproducing cross‐correlations is also discussed along with an enquiry into the multivariate approaches that can potentially address the bias in yielding cross‐correlations.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Page Range / eLocation ID:
p. 4479-4496
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. RCMs produced at ~0.5° (available in the NA-CORDEX database address issues related to coarse resolution of GCMs (produced at 2° to 4°). Nevertheless, due to systematic and random model errors, bias correction is needed for regional study applications. However, an acceptable threshold for magnitude of bias correction that will not affect future RCM projection behavior is unknown. The goal of this study is to evaluate the implications of a bias correction technique (distribution mapping) for four GCM-RCM combinations for simulating regional precipitation and, subsequently, streamflow, surface runoff, and water yield when integrated into Soil and Water Assessment Tool (SWAT) applications for the Des Moines River basin (31,893 km²) in Iowa-Minnesota, U.S. The climate projections tested in this study are an ensemble of 2 GCMs (MPI-ESM-MR and GFDL-ESM2M) and 2 RCMs (WRF and RegCM4) for historical (1981-2005) and future (2030-2050) projections in the NA-CORDEX CMIP5 archive. The PRISM dataset was used for bias correction of GCM-RCM historical precipitation and for SWAT baseline simulations. We found bias correction improves historical total annual volumes for precipitation, seasonality, spatial distribution and mean error for all GCM-RCM combinations. However, improvement of correlation coefficient occurred only for the RegCM4 simulations. Monthly precipitation was overestimated for all raw models from January to April, and WRF overestimated monthly precipitation from January to August. The bias correction method improved monthly average precipitation for all four GCM-RCM combinations. The ability to detect occurrence of precipitation events was slightly better for the raw models, especially for the GCM-WRF combinations. Simulated historical streamflow was compared across 26 monitoring stations: Historical GCM-RCM outputs were unable to replicate PRISM KGE statistical results (KGE>0.5). However, the Pbias streamflow results matched the PRISM simulation for all bias-corrected models and for the raw GFDL-RegCM4 combination. For future scenarios there was no change in the annual trend, except for raw WRF models that estimated an increase of about 35% in annual precipitation. Seasonal variability remained the same, indicating wetter summers and drier winters. However, most models predicted an increase in monthly precipitation from January to March, and a reduction in June and July (except for raw WRF models). The impact on hydrological simulations based on future projected conditions was observed for surface runoff and water yield. Both variables were characterized by monthly volume overestimation; the raw WRF models predicted up to three times greater volume compared to the historical run. RegCM4 projected increased surface runoff and water yield for winter and spring by two times, and a slight volume reduction in summer and autumn. Meanwhile, the bias-corrected models showed changes in prediction signals: In some cases, raw models projected an increase in surface runoff and water yield but the bias-corrected models projected a reduction of these variables. These findings underscore the need for more extended research on bias correction and transposition between historical and future data. 
    more » « less
  2. Abstract

    Future changes in climate variable exhibit prominent impact on flood magnitudes, crop yields, and freshwater withdrawal. Researchers typically ignore the large degree of uncertainty translated from climate projections to the estimated climate change magnitudes while applying pre‐processing approaches on climate change projections. General Circulation Models (GCM) exhibit substantial uncertainty in projecting future changes in the seasonal temperature, which is evaluated by estimating the shift in either the mean or variance. Bias between the observed changes (1950–1999) and GCM simulated changes vary across models, climate regions, seasons, and under emission scenarios. The simplest approach to reduce model structural uncertainty, equal weighting of GCMs, does not consider superiority of one or multiple GCMs compared to the rest. The current study adopts a performance‐based model combination approach that has shown efficiency in streamflow and weather forecasting, and GCM precipitation simulation. The optimal model combination approach has been modified to combine multi‐model climate change information, while yielding the spatial correlation in climate change information within a geographic region. The optimal model combination approach, along with a simple bias‐correction, is applied on 10 GCMs over nine climate regions across the coterminous United States (CONUS). We found that the optimal combination exhibits lower RMSE values as compared to the equal combination. Correlations between the model combined projections under optimal combination and the observed changes are strong and positive (>0.5). Future (2000–49) model combined projections exhibit an increase in the mean seasonal temperature by 2°C for winter and by 1°C for summer over almost all climate regions.

    more » « less
  3. In this study, we evaluate the implications of a bias correction method on a combination of Global/Regional Climate Models (GCM and RCM) for simulating precipitation and, subsequently, streamflow, surface runoff, and water yield in the Soil and Water Assessment Tool (SWAT). The study area is the Des Moines River Basin, U.S.A. The climate projections are two RCMs driven by two GCMs for historical simulations (1981–2005) and future projections (2030–2050). Bias correction improves historical precipitation for annual volumes, seasonality, spatial distribution, and mean error. Simulated monthly historical streamflow was compared across 26 monitoring stations with mostly satisfactory results for percent bias (Pbias). There were no changes in annual trends for future scenarios except for raw WRF models. Seasonal variability remained the same; however, most models predicted an increase in monthly precipitation from January to March and a reduction for June and July. Meanwhile, the bias-corrected models showed changes in prediction signals. In some cases, raw models projected an increase in surface runoff and water yield, but the bias-corrected models projected a reduction in these variables. This suggests the bias correction may be larger than the climate-change signal and indicates the procedure is not a small correction but a major factor. 
    more » « less
  4. Abstract

    Flood‐frequency curves, critical for water infrastructure design, are typically developed based on a stationary climate assumption. However, climate changes are expected to violate this assumption. Here, we propose a new, climate‐informed methodology for estimating flood‐frequency curves under non‐stationary future climate conditions. The methodology develops an asynchronous, semiparametric local‐likelihood regression (ASLLR) model that relates moments of annual maximum flood to climate variables using the generalized linear model. We estimate the first two marginal moments (MM) – the mean and variance – of the underlying log‐Pearson Type‐3 distribution from the ASLLR with the monthly rainfall and temperature as predictors. The proposed methodology, ASLLR‐MM, is applied to 40 U.S. Geological Survey streamgages covering 18 water resources regions across the conterminous United States. A correction based on the aridity index was applied on the estimated variance, after which the ASLLR‐MM approach was evaluated with both historical (1951–2005) and projected (2006–2035, under RCP4.5 and RCP8.5) monthly precipitation and temperature from eight Global Circulation Models (GCMs) consisting of 39 ensemble members. The estimated flood‐frequency quantiles resulting from the ASLLR‐MM and GCM members compare well with the flood‐frequency quantiles estimated using the historical period of observed climate and flood information for humid basins, whereas the uncertainty in model estimates is higher in arid basins. Considering additional atmospheric and land‐surface conditions and a multi‐level model structure that includes other basins in a region could further improve the model performance in arid basins.

    more » « less
  5. Climate studies based on global climate models (GCMs) project a steady increase in annual average temperature and severe heat extremes in central North America during the mid-century and beyond. However, the agreement of observed trends with climate model trends varies substantially across the region. The present study focuses on two different locations: Des Moines, IA and Austin, TX. In Des Moines, annual extreme temperatures have not increased over the past three decades unlike the trend of regionally-downscaled GCM data for the Midwest, likely due to a “warming hole” over the area linked to agricultural factors. This warming hole effect is not evident for Austin over the same time period, where extreme temperatures have been higher than projected by regionally-downscaled climate (RDC) forecasts. In consideration of the deviation of such RDC extreme temperature forecasts from observations, this study statistically analyzes RDC data in conjunction with observational data to define for these two cities a 95% prediction interval of heat extreme values by 2040. The statistical model is constructed using a linear combination of RDC ensemble-member annual extreme temperature forecasts with regression coefficients for individual forecasts estimated by optimizing model results against observations over a 52-year training period. 
    more » « less