Synopsis This study extends recent research demonstrating that the veiled chameleon (Chamaeleo calyptratus) can produce and detect biotremors. Chameleons were paired in various social contexts: dominance (male–male; female–female C. calyptratus); courtship (male–female C. calyptratus); heterospecific (C. calyptratus + C. gracilis); and inter-size class dominance (adult + juvenile C. calyptratus). Simultaneous video and accelerometer recordings were used to monitor their behavior and record a total of 398 biotremors. Chamaeleo calyptratus produced biotremors primarily in conspecific dominance and courtship contexts, accounting for 84.7% of the total biotremors recorded, with biotremor production varying greatly between individuals. Biotremors were elicited by visual contact with another conspecific or heterospecific, and trials in which chameleons exhibited visual displays and aggressive behaviors were more likely to record biotremors. Three classes of biotremor were identified—hoots, mini-hoots, and rumbles, which differed significantly in fundamental frequency, duration, and relative intensity. Biotremor frequency decreased with increasing signal duration, and frequency modulation was evident, especially in hoots. Overall, the data show that C. calyptratus utilizes substrate-borne vibrational communication during conspecific and possibly heterospecific interactions.
more »
« less
The transcriptome of the veiled chameleon ( Chamaeleo calyptratus ): A resource for studying the evolution and development of vertebrates
Abstract PurposeThe veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo‐devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking. MethodsTo address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated. ResultsWe then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins. ConclusionWe present this de novo, annotated, multi‐tissue transcriptome assembly for the Veiled Chameleon,Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively.
more »
« less
- Award ID(s):
- 1657662
- PAR ID:
- 10459740
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Developmental Dynamics
- Volume:
- 248
- Issue:
- 8
- ISSN:
- 1058-8388
- Format(s):
- Medium: X Size: p. 702-708
- Size(s):
- p. 702-708
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Biotremors are vibrations, usually surface waves along the boundary of a medium, produced by an organism. While substrate-borne vibrations are utilized by different reptile species, true conspecific communication via biotremors has not yet been demonstrated in lizards. Recent research revealed that the veiled chameleon (Chamaeleo calyptratus) produces biotremors. The prerequisites for any communication system are the ability of an organism to produce and detect a signal. We tested C. calyptratus behavioral responses to vibrations by placing them on a dowel attached to a shaker, emitting vibrations of 25, 50, 150, 300, and 600 Hz and compared their locomotory velocity before and after the stimulus. Adult chameleons exhibited a freeze response to 50 and 150 Hz, while juveniles exhibited a similar response to frequencies between 50 and 300 Hz. In a second experiment, chameleons were induced to produce biotremors via experimenter contact. These biotremors ranged in mean fundamental frequency from 106.4 to 170.3 Hz and in duration from 0.06 to 0.29 s. Overall, two classes of biotremors were identified, “hoots” and “mini-hoots,” which differed significantly in mean relative signal intensity (−7.5 and −32.5 dB, respectively). Juvenile chameleons 2 months of age were able to produce biotremors, suggesting this behavior may serve a wide range of ecological functions throughout ontogeny. Overall, the data demonstrate that C. calyptratus can both produce and detect biotremors that could be used for intraspecific communication.more » « less
-
Abstract ARGONAUTES are the central effector proteins ofRNAsilencing which bind target transcripts in a smallRNA‐guided manner.Arabidopsis thalianahas 10ARGONAUTE(AGO) genes, with specialized roles inRNA‐directedDNAmethylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization amongAGOgenes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO1,AGO10, andAGO7using yeast 1‐hybrid assays. A ranked list of candidateDNA‐bindingTFs revealed binding of theAGO7promoter by a number of proteins in two families: the miR156‐regulatedSPLfamily and the miR319‐regulatedTCPfamily, both of which have roles in developmental timing and leaf morphology. Possible functions forSPLandTCPbinding are unclear: we showed that these binding sites are not required for the polar expression pattern ofAGO7, nor for the function ofAGO7in leaf shape. NormalAGO7transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO7‐triggeredTAS3pathway functions in timing and polarity.more » « less
-
Abstract BackgroundPronounced asymmetric changes in ocular globe size during eye development have been observed in a number of species ranging from humans to lizards. In contrast, largely symmetric changes in globe size have been described for other species like rodents. We propose that asymmetric changes in the three‐dimensional structure of the developing eye correlate with the types of retinal remodeling needed to produce areas of high photoreceptor density. To test this idea, we systematically examined three‐dimensional aspects of globe size as a function of eye development in the bifoveated brown anole,Anolis sagrei. ResultsDuring embryonic development, the anole eye undergoes dynamic changes in ocular shape. Initially spherical, the eye elongates in the presumptive foveal regions of the retina and then proceeds through a period of retraction that returns the eye to its spherical shape. During this period of retraction, pit formation and photoreceptor cell packing are observed. We found a similar pattern of elongation and retraction associated with the single fovea of the veiled chameleon,Chamaeleo calyptratus. ConclusionsThese results, together with those reported for other foveated species, support the idea that areas of high photoreceptor packing occur in regions where the ocular globe asymmetrically elongates and retracts during development.more » « less
-
PremiseThe ability to sequence genome‐scale data from herbarium specimens would allow for the economical development of data sets with broad taxonomic and geographic sampling that would otherwise not be possible. Here, we evaluate the utility of a basic double‐digest restriction site–associatedDNAsequencing (ddRADseq) protocol usingDNAs from four genera extracted from both silica‐dried and herbarium tissue. MethodsDNAs fromDraba,Boechera,Solidago, andIlexwere processed with a ddRADseq protocol. The effects ofDNAdegradation, taxon, and specimen age were assessed. ResultsAlthough taxon, preservation method, and specimen age affected data recovery, large phylogenetically informative data sets were obtained from the majority of samples. DiscussionThese results suggest that herbarium samples can be incorporated into ddRADseq project designs, and that specimen age can be used as a rapid on‐site guide for sample choice. The detailed protocol we provide will allow users to pursue herbarium‐based ddRADseq projects that minimize the expenses associated with fieldwork and sample evaluation.more » « less
An official website of the United States government
