skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Vivo Editing of Macrophages through Systemic Delivery of CRISPR‐Cas9‐Ribonucleoprotein‐Nanoparticle Nanoassemblies
Abstract Macrophages are key effectors of host defense and metabolism, making them promising targets for transient genetic therapy. Gene editing through the delivery of Cas9‐ribonucleoprotein (RNP) provides multiple advantages over gene delivery–based strategies for introducing CRISPR machinery to the cell. There are, however, significant physiological, cellular, and intracellular barriers to the effective delivery of the Cas9 protein and guide RNA (sgRNA) that have to date, restricted in vivo Cas9 protein–based approaches to local/topical delivery applications. Described herein is a new nanoassembled platform featuring coengineered nanoparticles and Cas9 protein that has been developed to provide efficient Cas9‐sgRNA delivery and concomitant CRISPR editing through systemic tail‐vein injection into mice, achieving >8% gene editing efficiency in macrophages of the liver and spleen.  more » « less
Award ID(s):
1808199
PAR ID:
10459783
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Therapeutics
Volume:
2
Issue:
10
ISSN:
2366-3987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CRISPR/Cas9 gene editing is a powerful technology to study the genetics of rising model organisms, such as the jewel waspNasonia vitripennis. However, current methods involving embryonic microinjection of CRISPR reagents are challenging. Delivery of Cas9 ribonucleoprotein into female ovaries is an alternative that has only been explored in a small handful of insects, such as mosquitoes, whiteflies and beetles. Here, we developed a simple protocol for germline gene editing by injecting Cas9 ribonucleoprotein in adultN. vitripennisfemales using either ReMOT control (Receptor‐Mediated Ovary Transduction of Cargo) or BAPC (Branched Amphiphilic Peptide Capsules) as ovary delivery methods. For ReMOT Control we used theDrosophila melanogaster‐derived peptide ‘P2C’ fused to EGFP to visualize the ovary delivery, and fused to Cas9 protein for gene editing of thecinnabargene using saponin as an endosomal escape reagent. For BAPC we optimized the concentrations of protein, sgRNA and the transfection reagent. We demonstrate delivery of protein cargo such as EGFP and Cas9 into developing oocytes via P2C peptide and BAPC. Additionally, somatic and germline gene editing were demonstrated. This approach will greatly facilitate CRISPR‐applied genetic manipulation in this and other rising model organisms. 
    more » « less
  2. null (Ed.)
    We report the development of post-transcriptional chemical methods that enable control over CRISPR–Cas9 gene editing activity both in in vitro assays and in living cells. We show that an azide-substituted acyl imidazole reagent (NAI-N 3 ) efficiently acylates CRISPR single guide RNAs (sgRNAs) in 20 minutes in buffer. Poly-acylated (“cloaked”) sgRNA was completely inactive in DNA cleavage with Cas9 in vitro , and activity was quantitatively restored after phosphine treatment. Delivery of cloaked sgRNA and Cas9 mRNA into HeLa cells was enabled by the use of charge-altering releasable transporters (CARTs), which outperformed commercial transfection reagents in transfecting sgRNA co-complexed with Cas9 encoding functional mRNA. Genomic DNA cleavage in the cells by CRISPR–Cas9 was efficiently restored after treatment with phosphine to remove the blocking acyl groups. Our results highlight the utility of reversible RNA acylation as a novel method for temporal control of genome-editing function. 
    more » « less
  3. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats associated with protein 9) was first identified as a component of the bacterial adaptive immune system and subsequently engineered into a genome-editing tool. The key breakthrough in this field came with the realization that CRISPR/Cas9 could be used in mammalian cells to enable transformative genetic editing. This technology has since become a vital tool for various genetic manipulations, including gene knockouts, knock-in point mutations, and gene regulation at both transcriptional and post-transcriptional levels. CRISPR/Cas9 holds great potential in human medicine, particularly for curing genetic disorders. However, despite significant innovation and advancement in genome editing, the technology still possesses critical limitations, such as off-target effects, immunogenicity issues, ethical considerations, regulatory hurdles, and the need for efficient delivery methods. To overcome these obstacles, efforts have focused on creating more accurate and reliable Cas9 nucleases and exploring innovative delivery methods. Recently, functional biomaterials and synthetic carriers have shown great potential as effective delivery vehicles for CRISPR/Cas9 components. In this review, we attempt to provide a comprehensive survey of the existing CRISPR-Cas9 delivery strategies, including viral delivery, biomaterials-based delivery, synthetic carriers, and physical delivery techniques. We underscore the urgent need for effective delivery systems to fully unlock the power of CRISPR/Cas9 technology and realize a seamless transition from benchtop research to clinical applications. 
    more » « less
  4. Abstract A high‐throughput non‐viral intracellular delivery platform is introduced for the transfection of large cargos with dosage‐control. This platform, termed Acoustic‐Electric Shear Orbiting Poration (AESOP), optimizes the delivery of intended cargo sizes with poration of the cell membranes via mechanical shear followed by the modulated expansion of these nanopores via electric field. Furthermore, AESOP utilizes acoustic microstreaming vortices wherein up to millions of cells are trapped and mixed uniformly with exogenous cargos, enabling the delivery of cargos into cells with targeted dosages. Intracellular delivery of a wide range of molecule sizes (<1 kDa to 2 MDa) with high efficiency (>90%), cell viability (>80%), and uniform dosages (<60% coefficient of variation (CV)) simultaneously into 1 million cells min−1per single chip is demonstrated. AESOP is successfully applied to two gene editing applications that require the delivery of large plasmids: i) enhanced green fluorescent protein (eGFP) plasmid (6.1 kbp) transfection, and ii) clustered regularly interspaced short palindromic repeats (CRISPR)‐Cas9‐mediated gene knockout using a 9.3 kbp plasmid DNA encoding Cas9 protein and single guide RNA (sgRNA). Compared to alternative platforms, this platform offers dosage‐controlled intracellular delivery of large plasmids simultaneously to large populations of cells while maintaining cell viability at comparable delivery efficiencies. 
    more » « less
  5. Abstract Until recently, precise genome editing has been limited to a few organisms. The ability of Cas9 to generate double stranded DNA breaks at specific genomic sites has greatly expanded molecular toolkits in many organisms and cell types. Before CRISPR‐Cas9 mediated genome editing,P. patenswas unique among plants in its ability to integrate DNA via homologous recombination. However, selection for homologous recombination events was required to obtain edited plants, limiting the types of editing that were possible. Now with CRISPR‐Cas9, molecular manipulations inP. patenshave greatly expanded. This protocol describes a method to generate a variety of different genome edits. The protocol describes a streamlined method to generate the Cas9/sgRNA expression constructs, design homology templates, transform, and quickly genotype plants. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Constructing the Cas9/sgRNA transient expression vector Alternate Protocol 1: Shortcut to generating single and pooled Cas9/sgRNA expression vectors Basic Protocol 2: Designing the oligonucleotide‐based homology‐directed repair (HDR) template Alternate Protocol 2: Designing the plasmid‐based HDR template Basic Protocol 3: Inducing genome editing by transforming CRISPR vector intoP. patensprotoplasts Basic Protocol 4: Identifying edited plants. 
    more » « less