skip to main content


Title: Exceedingly Small Gadolinium Oxide Nanoparticles with Remarkable Relaxivities for Magnetic Resonance Imaging of Tumors
Abstract

Gd chelates have occupied most of the market of magnetic resonance imaging (MRI) contrast agents for decades. However, there have been some problems (nephrotoxicity, non‐specificity, and lowr1) that limit their applications. Herein, a wet‐chemical method is proposed for facile synthesis of poly(acrylic acid) (PAA) stabilized exceedingly small gadolinium oxide nanoparticles (ES‐GON‐PAA) with an excellent water dispersibility and a size smaller than 2.0 nm, which is a powerfulT1‐weighted MRI contrast agent for diagnosis of diseases due to its remarkable relaxivities (r1= 70.2 ± 1.8 mM−1s−1, andr2/r1= 1.02 ± 0.03, at 1.5 T). Ther1is much higher and ther2/r1is lower than that of the commercial Gd chelates and reported gadolinium oxide nanoparticles (GONs). Further ES‐GON‐PAA is developed with conjugation of RGD2 (RGD dimer) (i.e., ES‐GON‐PAA@RGD2) forT1‐weighted MRI of tumors that overexpress RGD receptors (i.e., integrinαvβ3). The maximum signal enhancement (ΔSNR) forT1‐weighted MRI of tumors reaches up to 372 ± 56% at 2 h post‐injection of ES‐GON‐PAA@RGD2, which is much higher than commercial Gd‐chelates (<80%). Due to the high biocompatibility and high tumor accumulation, ES‐GON‐PAA@RGD2 with remarkable relaxivities is a promising and powerfulT1‐weighted MRI contrast agent.

 
more » « less
PAR ID:
10459786
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
15
Issue:
41
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9–15.7 nm) in order to understand size-dependent properties of T1contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol−1 s−1, more than an order of magnitude higher than corresponding r1values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1relaxivities.

     
    more » « less
  2. Magnetic resonance imaging (MRI) is a routinely used imaging technique in medical diagnostics. To enhance the quality of MR images, contrast agents (CAs) are used, which account for nearly 40% of MRI exams in the clinic globally. The most used CAs are gadolinium-based CAs (GBCAs) but the use of GBCAs has been linked with metal-deposition in vital organs. Gadolinium deposition has been shown to be correlated with nephrogenic systemic fibrosis, a fibrosis of the skin and internal organs. Therefore, there is an unmet need for a new CA alternative to GBCAs for T 1 -weighted Ce-MRI. Herein, we designed paramagnetic ferric iron( iii ) ion-chelated poly(lactic- co -glycolic)acid nanoparticle formulation and routinely examined their application in Ce-MRI using clinical and ultra-high-field MRI scanners. Nanoparticles were monodispersed and highly stable at physiological pH over time with the hydrodynamic size of 130 ± 12 nm and polydispersity index of 0.231 ± 0.026. The T 1 -contrast efficacy of the nanoparticles was compared with commercial agent gadopentetate dimeglumine, called Magnevist®, in aqueous phantoms in vitro and then validated in vivo by visualizing an angiographic map in a clinical MRI scanner. Relaxivities of the nanoparticles in an aqueous environment were r 1 = 10.59 ± 0.32 mmol −1 s −1 and r 1 = 3.02 ± 0.14 mmol −1 s −1 at 3.0 T and 14.1 T measured at room temperature and pH 7.4, respectively. The clinically relevant magnetic field relaxivity is three times higher compared to the Magnevist®, a clinical GBCA, signifying its potential applicability in clinical settings. Moreover, iron is an endogenous metal with known metabolic safety, and the polymer and phospholipids used in the nanoconstruct are biodegradable and biocompatible components. These properties further put the proposed T 1 agent in a promising position in contrast-enhanced MRI of patients with any disease conditions. 
    more » « less
  3. Magnetic resonance imaging (MRI) is a medical imaging technique that provides detailed information on tissues and organs. However, the low sensitivity of the technique requires the use of contrast agents, usually ones that are based on the chelates of gadolinium ions. In an effort to improve MRI signal intensity, we developed two strategies whereby the ligand DOTA and Gd(III) ions are contained within Zn(II)-promoted collagen peptide (NCoH) supramolecular assemblies. The DOTA moiety was included in the assembly either via a collagen peptide sidechain (NHdota) or through metal–ligand interactions with a His-tagged DOTA conjugate (DOTA-His6). SEM verified that the morphology of the NCoH assembly was maintained in the presence of the DOTA-containing peptides (microflorettes), and EDX and ICP-MS confirmed that Gd(III) ions were incorporated within the microflorettes. The Gd(III)-loaded DOTA florettes demonstrated higher intensities for the T1-weighted MRI signal and higher longitudinal relaxivity (r1) values, as compared to the clinically used contrast agent Magnevist. Additionally, no appreciable cellular toxicity was observed with the collagen microflorettes loaded with Gd(III). Overall, two peptide-based materials were generated that have potential as MRI contrast agents. 
    more » « less
  4. Abstract

    Early studies suggested that FeIIIcomplexes cannot compete with GdIIIcomplexes as T1MRI contrast agents. Now it is shown that one member of a class of high‐spin macrocyclic FeIIIcomplexes produces more intense contrast in mice kidneys and liver at 30 minutes post‐injection than does a commercially used GdIIIagent and also produces similar T1relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIIImacrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable‐temperature17O NMR studies suggest that none of the complexes has a single, integral inner‐sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIIIcomplexes that correspond, in part, to their r1relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.

     
    more » « less
  5. Abstract

    Early studies suggested that FeIIIcomplexes cannot compete with GdIIIcomplexes as T1MRI contrast agents. Now it is shown that one member of a class of high‐spin macrocyclic FeIIIcomplexes produces more intense contrast in mice kidneys and liver at 30 minutes post‐injection than does a commercially used GdIIIagent and also produces similar T1relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIIImacrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable‐temperature17O NMR studies suggest that none of the complexes has a single, integral inner‐sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIIIcomplexes that correspond, in part, to their r1relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.

     
    more » « less