skip to main content


Title: Coordinating septum formation and the actomyosin ring during cytokinesis in Schizosaccharomyces pombe
Summary

During cytokinesis, animal and fungal cells form a membrane furrow via actomyosin ring constriction. Our understanding of actomyosin ring‐driven cytokinesis stems extensively from the fission yeast model system. However, unlike animal cells, actomyosin ring constriction occurs simultaneously with septum formation in fungi. While the formation of an actomyosin ring is essential for cytokinesis in fission yeast, proper furrow formation also requires septum deposition. The molecular mechanisms of spatiotemporal coordination of septum deposition with actomyosin ring constriction are poorly understood. Although the role of the actomyosin ring as a mechanical structure driving furrow formation is better understood, its role as a spatiotemporal landmark for septum deposition is not widely discussed. Here we review and discuss the recent advances describing how the actomyosin ring spatiotemporally regulates membrane traffic to promote septum‐driven cytokinesis in fission yeast. Finally, we explore emerging questions in cytokinesis, and discuss the role of extracellular matrix during cytokinesis in other organisms.

 
more » « less
Award ID(s):
1616495
NSF-PAR ID:
10459789
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Microbiology
Volume:
112
Issue:
6
ISSN:
0950-382X
Page Range / eLocation ID:
p. 1645-1657
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fission yeast cytokinesis is driven by simultaneous septum synthesis, membrane furrowing and actomyosin ring constriction. The septum consists of a primary septum flanked by secondary septa. First, delivery of the glucan synthase Bgs1 and membrane vesicles initiate primary septum synthesis and furrowing. Next, Bgs4 is delivered for secondary septum formation. It is unclear how septum synthesis is coordinated with membrane furrowing. Cdc42 promotes delivery of Bgs1 but not Bgs4. We find that after primary septum initiation, Cdc42 inactivators Rga4 and Rga6 localize to the division site. Inrga4Δrga6Δmutants, Cdc42 activity is enhanced during late cytokinesis and cells take longer to separate. Electron micrographs of the division site in these mutants exhibit malformed septum with irregular membrane structures. These mutants have a larger division plane with enhanced Bgs1 delivery but fail to enhance accumulation of Bgs4 and several exocytic proteins. Additionally, these mutants show endocytic defects at the division site. This suggests that Cdc42 regulates primary septum formation and only certain membrane trafficking events. As cytokinesis progresses Rga4 and Rga6 localize to the division site to decrease Cdc42 activity to allow coupling of Cdc42‐independent membrane trafficking events with septum formation for proper septum morphology.

     
    more » « less
  2. During cytokinesis, fission yeast coordinates actomyosin ring constriction with septum ingression, resulting in concentric furrow formation by a poorly defined mechanism. We report that cells lacking the Cdc42 activator Gef1, combined with an activated allele of the formin, Cdc12, display non-concentric furrowing. Non-concentrically furrowing cells display uneven distribution of the scaffold Cdc15 along the ring. This suggests that after ring assembly, uniform Cdc15 distribution along the ring enables proper furrow formation. We find that after assembly Cdc15 is recruited to the ring in an Arp2/3 complex-dependent manner and is decreased in the activated cdc12 mutant. Cdc15 at cortical endocytic patches show increased levels and extended lifetimes in gef1 and activated cdc12 mutants. We hypothesize endocytosis helps recruit Cdc15 to assembled rings; uneven Cdc15 distribution at the ring occurs when endocytic patches contain increased Cdc15 levels and patch-association rate is slow. Based on this, we developed a mathematical model that captures experimentally observed Cdc15 distributions along the ring. We propose that, at the ring, Gef1 and endocytic events promote uniform Cdc15 organization to enable proper septum ingression and concentric furrow formation.

     
    more » « less
  3. ABSTRACT

    During cytokinesis, a series of coordinated events partition a dividing cell. Accurate regulation of cytokinesis is essential for proliferation and genome integrity. In fission yeast, these coordinated events ensure that the actomyosin ring and septum start ingressing only after chromosome segregation. How cytokinetic events are coordinated remains unclear. The GTPase Cdc42 promotes recruitment of certain cell wall-building enzymes whereas the GTPase Rho1 activates these enzymes. We show that Cdc42 prevents early Rho1 activation during fission yeast cytokinesis. Using an active Rho probe, we find that although the Rho1 activators Rgf1 and Rgf3 localize to the division site in early anaphase, Rho1 is not activated until late anaphase, just before the onset of ring constriction. We find that loss of Cdc42 activation enables precocious Rho1 activation in early anaphase. Furthermore, we provide functional and genetic evidence that Cdc42-dependent Rho1 inhibition is mediated by the Cdc42 target Pak1 kinase. Our work proposes a mechanism of Rho1 regulation by active Cdc42 to coordinate timely septum formation and cytokinesis fidelity.

     
    more » « less
  4. Abstract

    Cdc42, a Rho-family GTPase, is a master regulator of cell polarity. Recently, it has been shown that Cdc42 also facilitates proper cytokinesis in the fission yeast Schizosaccharomyces pombe. Cdc42 is activated by two partially redundant GEFs, Gef1 and Scd1. Although both GEFs activate Cdc42, their deletion mutants display distinct phenotypes, indicating that they are differentially regulated by an unknown mechanism. During cytokinesis, Gef1 localizes to the division site and activates Cdc42 to initiate ring constriction and septum ingression. Here, we report that the F-BAR protein Cdc15 promotes Gef1 localization to its functional sites. We show that cdc15 promotes Gef1 association with cortical puncta at the incipient division site to activate Cdc42 during ring assembly. Moreover, cdc15 phospho-mutants phenocopy the polarity phenotypes of gef1 mutants. In a hypermorphic cdc15 mutant, Gef1 localizes precociously to the division site and is readily detected at the cortical patches and the cell cortex. Correspondingly, the hypermorphic cdc15 mutant shows increased bipolarity during interphase and precocious Cdc42 activation at the division site during cytokinesis. Finally, loss of gef1 in hypermorphic cdc15 mutants abrogates the increased bipolarity and precocious Cdc42 activation phenotype. We did not see any change in the localization of the other GEF Scd1 in a Cdc15-dependent manner. Our data indicate that Cdc15 facilitates Cdc42 activation at the division site during cytokinesis at the cell cortex to promote bipolarity and this is mediated by promoting Gef1 localization to these sites.

     
    more » « less
  5. It is widely believed that cleavage-furrow formation during cytokinesis is driven by the contraction of a ring containing F-actin and type-II myosin. However, even in cells that have such rings, they are not always essential for furrow formation. Moreover, many taxonomically diverse eukaryotic cells divide by furrowing but have no type-II myosin, making it unlikely that an actomyosin ring drives furrowing. To explore this issue further, we have used one such organism, the green algaChlamydomonas reinhardtii. We found that although F-actin is associated with the furrow region, none of the three myosins (of types VIII and XI) is localized there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug, furrows still formed and the cells divided, although somewhat less efficiently than normal. Unexpectedly, division of the largeChlamydomonaschloroplast was delayed in the cells lacking F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain, at least in part, the delay in cytokinesis itself. Earlier studies had shown an association of microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show that microtubules are still associated with the furrows in the absence of F-actin, consistent with the possibility that the microtubules are important for furrow formation. We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core process for furrow formation that was already present in ancestral eukaryotes.

     
    more » « less