skip to main content


Title: Temporally adaptive acoustic sampling to maximize detection across a suite of focal wildlife species
Abstract

Acoustic recordings of the environment can produce species presence–absence data for characterizing populations of sound‐producing wildlife over multiple spatial scales. If a species is present at a site but does not vocalize during a scheduled audio recording survey, researchers may incorrectly conclude that the species is absent (“false negative”). The risk of false negatives is compounded when audio devices have sampling constraints, do not record continuously, and must be manually scheduled to operate at pre‐selected times of day, particularly when research programs target multiple species with acoustic availability that varies across temporal conditions.

We developed a temporally adaptive acoustic sampling algorithm to maximize detection probabilities for a suite of focal species amid sampling constraints. The algorithm combines user‐supplied species vocalization models with site‐specific weather forecasts to set an optimized sampling schedule for the following day. To test our algorithm, we simulated hourly vocalization probabilities for a suite of focal species in a hypothetical monitoring area for the year 2016. We conducted a factorial experiment that sampled from the 2016 acoustic environment to compare the probability of acoustic detection by a fixed (stationary) schedule versus a temporally adaptive optimized schedule under several sampling efforts and monitoring durations.

We found that over the course of a study season, the probability of acoustically capturing a focal species (given presence) at least once via automated acoustic monitoring was greater (and acoustic capture occurred earlier in the season) when using the temporally adaptive optimized schedule as compared to a fixed schedule.

The advantages of a temporally adaptive optimized acoustic sampling schedule are magnified when a study duration is short, sampling effort is low, and/or species acoustic availability is minimal. This methodology presents the opportunity to maximize acoustic monitoring sampling efforts amid constraints.

 
more » « less
NSF-PAR ID:
10459799
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
18
ISSN:
2045-7758
Page Range / eLocation ID:
p. 10582-10600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interface between field biology and technology is energizing the collection of vast quantities of environmental data. Passive acoustic monitoring, the use of unattended recording devices to capture environmental sound, is an example where technological advances have facilitated an influx of data that routinely exceeds the capacity for analysis. Computational advances, particularly the integration of machine learning approaches, will support data extraction efforts. However, the analysis and interpretation of these data will require parallel growth in conceptual and technical approaches for data analysis. Here, we use a large hand‐annotated dataset to showcase analysis approaches that will become increasingly useful as datasets grow and data extraction can be partially automated.

    We propose and demonstrate seven technical approaches for analyzing bioacoustic data. These include the following: (1) generating species lists and descriptions of vocal variation, (2) assessing how abiotic factors (e.g., rain and wind) impact vocalization rates, (3) testing for differences in community vocalization activity across sites and habitat types, (4) quantifying the phenology of vocal activity, (5) testing for spatiotemporal correlations in vocalizations within species, (6) among species, and (7) using rarefaction analysis to quantify diversity and optimize bioacoustic sampling.

    To demonstrate these approaches, we sampled in 2016 and 2018 and used hand annotations of 129,866 bird vocalizations from two forests in New Hampshire, USA, including sites in the Hubbard Brook Experiment Forest where bioacoustic data could be integrated with more than 50 years of observer‐based avian studies. Acoustic monitoring revealed differences in community patterns in vocalization activity between forests of different ages, as well as between nearby similar watersheds. Of numerous environmental variables that were evaluated, background noise was most clearly related to vocalization rates. The songbird community included one cluster of species where vocalization rates declined as ambient noise increased and another cluster where vocalization rates declined over the nesting season. In some common species, the number of vocalizations produced per day was correlated at scales of up to 15 km. Rarefaction analyses showed that adding sampling sites increased species detections more than adding sampling days.

    Although our analyses used hand‐annotated data, the methods will extend readily to large‐scale automated detection of vocalization events. Such data are likely to become increasingly available as autonomous recording units become more advanced, affordable, and power efficient. Passive acoustic monitoring with human or automated identification at the species level offers growing potential to complement observer‐based studies of avian ecology.

     
    more » « less
  2. Abstract

    Monitoring wildlife abundance across space and time is an essential task to study their population dynamics and inform effective management. Acoustic recording units are a promising technology for efficiently monitoring bird populations and communities. While current acoustic data models provide information on the presence/absence of individual species, new approaches are needed to monitor population abundance, ideally across large spatio‐temporal regions.

    We present an integrated modelling framework that combines high‐quality but temporally sparse bird point count survey data with acoustic recordings. Our models account for imperfect detection in both data types and false positive errors in the acoustic data. Using simulations, we compare the accuracy and precision of abundance estimates using differing amounts of acoustic vocalizations obtained from a clustering algorithm, point count data, and a subset of manually validated acoustic vocalizations. We also use our modelling framework in a case study to estimate abundance of the Eastern Wood‐Pewee (Contopus virens) in Vermont, USA.

    The simulation study reveals that combining acoustic and point count data via an integrated model improves accuracy and precision of abundance estimates compared with models informed by either acoustic or point count data alone. Improved estimates are obtained across a wide range of scenarios, with the largest gains occurring when detection probability for the point count data is low. Combining acoustic data with only a small number of point count surveys yields estimates of abundance without the need for validating any of the identified vocalizations from the acoustic data. Within our case study, the integrated models provided moderate support for a decline of the Eastern Wood‐Pewee in this region.

    Our integrated modelling approach combines dense acoustic data with few point count surveys to deliver reliable estimates of species abundance without the need for manual identification of acoustic vocalizations or a prohibitively expensive large number of repeated point count surveys. Our proposed approach offers an efficient monitoring alternative for large spatio‐temporal regions when point count data are difficult to obtain or when monitoring is focused on rare species with low detection probability.

     
    more » « less
  3. Abstract

    Camera traps (CTs) are a valuable tool in ecological research, amassing large quantities of information on the behaviour of diverse wildlife communities. CTs are predominantly used as passive data loggers to gather observational data for correlational analyses. Integrating CTs into experimental studies, however, can enable rigorous testing of key hypotheses in animal behaviour and conservation biology that are otherwise difficult or impossible to evaluate.

    We developed the 'BoomBox', an open‐source Arduino‐compatible board that attaches to commercially available CTs to form an Automated Behavioural Response (ABR) system. The modular unit connects directly to the CT’s passive infrared (PIR) motion sensor, playing audio files over external speakers when the sensor is triggered. This creates a remote playback system that captures animal responses to specific cues, combining the benefits of camera trapping (e.g. continuous monitoring in remote locations, lack of human observers, large data volume) with the power of experimental manipulations (e.g. controlled perturbations for strong mechanistic inference).

    Our system builds on previous ABR designs to provide a cheap (~100USD) and customizable field tool. We provide a practical guide detailing how to build and operate the BoomBox ABR system with suggestions for potential experimental designs that address a variety of questions in wildlife ecology. As proof‐of‐concept, we successfully field tested the BoomBox in two distinct field settings to study species interactions (predator–prey and predator–predator) and wildlife responses to conservation interventions.

    This new tool allows researchers to conduct a unique suite of manipulative experiments on free‐living species in complex environments, enhancing the ability to identify mechanistic drivers of species' behaviours and interactions in natural systems.

     
    more » « less
  4. Abstract

    Audio recording devices have changed significantly over the last 50 years, making large datasets of recordings of natural sounds, such as birdsong, easier to obtain. This increase in digital recordings necessitates an increase in high‐throughput methods of analysis for researchers. Specifically, there is a need in the community for open‐source methods that are tailored to recordings of varying qualities and from multiple species collected in nature.

    We developed Chipper, a Python‐based software to semi‐automate both the segmentation of acoustic signals and the subsequent analysis of their frequencies and durations. For avian recordings, we provide widgets to best determine appropriate thresholds for noise and syllable similarity, which aid in calculating note measurements and determining song syntax. In addition, we generated a set of synthetic songs with various levels of background noise to test Chipper's accuracy, repeatability and reproducibility.

    Chipper provides an effective way to quickly generate quantitative, reproducible measures of birdsong. The cross‐platform graphical user interface allows the user to adjust parameters and visualize the resulting spectrogram and signal segmentation, providing a simplified method for analysing field recordings.

    Chipper streamlines the processing of audio recordings with multiple user‐friendly tools and is optimized for multiple species and varying recording qualities. Ultimately, Chipper supports the use of citizen‐science data and increases the feasibility of large‐scale multi‐species birdsong studies.

     
    more » « less
  5. Abstract

    Consumer‐resource interactions are often influenced by other species in the community, such as when neighbouring plants increase or reduce herbivory to a focal plant species (known as associational effects). The many studies on associational effects between a focal plant and some neighbour have shown that these effects can vary greatly in strength and direction. But because almost all of these studies measure associational effects from only one or two neighbour species, we know little about the actual range of associational effects that a plant species might encounter in a natural setting. This makes it difficult to determine how important effects of neighbours are in real field settings, and how associational effects might interact with competition and other processes to influence plant community composition.

    In this study, we used a field experiment with a focal species,Solanum carolinense, and 11 common neighbour species to investigate how associational effects vary among many co‐occurring neighbour species and to test whether factors such as neighbour plant apparency, phylogenetic proximity to the focal species, or effects on focal plant defence traits help to explain interspecific variation in associational effect strength.

    We found that some neighbour species affectedS. carolinensedamage and attack by specialist herbivores, but associational effects of most neighbours were weak. Associational effects increased herbivore attack on average earlier in the season (associational susceptibility) and reduced herbivore attack on average later in the season (associational resistance) relative toS. carolinensein monoculture.

    We found some evidence that a neighbour's associational effect was related to its biomass and phylogenetic proximity to the focal species. While neighbour species differed in their effects on physical leaf traits of focal plants (trichome density, specific leaf area, and leaf toughness), these traits did not appear to mediate the effects of neighbours on focal plant herbivory.

    Synthesis. Our results suggest that the distribution of associational effect strengths in natural communities are similar to those observed for other interaction types, and that multiple mechanisms are likely acting simultaneously to shape associational effects of different neighbour species.

     
    more » « less