skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two‐Photon Up‐Conversion Photoluminescence Realized through Spatially Extended Gap States in Quasi‐2D Perovskite Films
Abstract A new approach to generate a two‐photon up‐conversion photoluminescence (PL) by directly exciting the gap states with continuous‐wave (CW) infrared photoexcitation in solution‐processing quasi‐2D perovskite films [(PEA)2(MA)4Pb5Br16withn= 5] is reported. Specifically, a visible PL peaked at 520 nm is observed with the quadratic power dependence by exciting the gap states with CW 980 nm laser excitation, indicating a two‐photon up‐conversion PL occurring in quasi‐2D perovskite films. Decreasing the gap states by reducing thenvalue leads to a dramatic decrease in the two‐photon up‐conversion PL signal. This confirms that the gap states are indeed responsible for generating the two‐photon up‐conversion PL in quasi‐2D perovskites. Furthermore, mechanical scratching indicates that the different‐n‐value nanoplates are essentially uniformly formed in the quasi‐2D perovskite films toward generating multi‐photon up‐conversion light emission. More importantly, the two‐photon up‐conversion PL is found to be sensitive to an external magnetic field, indicating that the gap states are essentially formed as spatially extended states ready for multi‐photon excitation. Polarization‐dependent up‐conversion PL studies reveal that the gap states experience the orbit–orbit interaction through Coulomb polarization to form spatially extended states toward developing multi‐photon up‐conversion light emission in quasi‐2D perovskites.  more » « less
Award ID(s):
1911659
PAR ID:
10459818
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
49
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 2D perovskites are recently attracting a significant amount of attention, mainly due to their improved stability compared with their 3D counterpart, e.g., the archetypical MAPbI3. Interestingly, the first studies on 2D perovskites can be dated back to the 1980s. The most popular 2D perovskites have a general formula of (RNH3)2MAn−1MnX3n+1, wherenrepresents the number of metal halide octahedrons between the insulating organic cation layers. The optoelectronic properties of 2D perovskites, e.g., band gap, are highly dependent on the thickness of the inorganic layers (i.e., the value ofn). Herein, 2D perovskites are arbitrarily divided into three classes, strict 2D (n= 1), quasi‐2D (n= 2–5), and quasi‐3D (n> 5), and research progress is summarized following this classification. The majority of existing 2D perovskites only employ very simple organic cations (e.g., butyl ammonium or phenylethyl ammonium), which merely function as the supporting layer/insulating barrier to achieve the 2D structure. Thus, a particularly important research question is: can functional organic cations be designed for these 2D perovskites, where these functional organic cations would play an important role in dictating the optoelectronic properties of these organic–inorganic hybrid materials, leading to unique device performance or applications? 
    more » « less
  2. The layer edge states or low energy state (LES) in 2D hybrid organic–inorganic perovskites demonstrate a prolonged carrier lifetime for better performance of optoelectronic devices. However, the fundamental understanding of LES in 2D perovskites is still inconclusive. Herein, a photoluminescence (PL) study of LES in 2D Ruddlesden–Popper perovskites is presented withn = 2 andn = 3 from their cleaved cross sections that are more stable than the natural edge. The PL measurements clearly observe reversible, and irreversible surface relaxations (case I and case II) in three laser intensity ranges, further supported by a PL excitation cycle from low to high laser intensity, and vice versa. The PL wavelength of LES is tunable with laser intensity and blueshifts with increasing laser intensity during irreversible surface relaxation process (case I). Fluorescence lifetime imaging (FLIM) shows that the LES has a longer lifetime than the band‐edge emission in the sample without a photodegradation, while the BE lifetime becomes relatively longer in the area with a photodegradation. The presented laser tunable LES and the related irreversible relaxation process provide a new insight that can help improve the photostability in 2D perovskites and understand roles of LESs in optoelectronic device performance. 
    more » « less
  3. Abstract Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices. 
    more » « less
  4. Abstract Ruddleson–Popper (RP) perovskites have emerged as a class of material inheriting the superior optoelectronic properties of two materials: perovskites and 2D materials. The large exciton binding energy and natural quantum well structure not only make these materials ideal platforms to study light–matter interactions but also render them suitable for fabrication of various functional optoelectronic devices. Nanoscale structuring and morphology control have led to semiconductors with enhanced functionalities. Nanowires of semiconducting materials are extensively used for important applications like lasing and sensing. However, catalyst and template‐free scalable growth of nanowires of 2D perovskites has remained elusive. In this paper, a facile approach for morphology‐controlled growth of nanowires of 2D perovskite, (BA)2PbI4, is demonstrated. Additionally, it is shown that the photoluminescence (PL) from the nanowires is highly polarized with a polarization ratio as large as ≈0.73, which is one of the largest reported for perovskites. It is further shown that the photocurrent from the hybrid nanowire/graphene device is also sensitive to the polarization of the incident light with the photocurrent anisotropy ratio of ≈3.62 (much larger than the previously reported value of 2.68 for perovskites), thus demonstrating the potential of these nanowires as highly efficient photodetectors for polarized light. 
    more » « less
  5. Abstract Perovskite solar cells in which 2D perovskites are incorporated within a 3D perovskite network exhibit improved stability with respect to purely 3D systems, but lower record power conversion efficiencies (PCEs). Here, a breakthrough is reported in achieving enhanced PCEs, increased stability, and suppressed photocurrent hysteresis by incorporating n‐type, low‐optical‐gap conjugated organic molecules into 2D:3D mixed perovskite composites. The resulting ternary perovskite–organic composites display extended absorption in the near‐infrared region, improved film morphology, enlarged crystallinity, balanced charge transport, efficient photoinduced charge transfer, and suppressed counter‐ion movement. As a result, the ternary perovskite–organic solar cells exhibit PCEs over 23%, which are among the best PCEs for perovskite solar cells with p–i–n device structure. Moreover, the ternary perovskite–organic solar cells possess dramatically enhanced stability and diminished photocurrent hysteresis. All these results demonstrate that the strategy of exploiting ternary perovskite–organic composite thin films provides a facile way to realize high‐performance perovskite solar cells. 
    more » « less