The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled to
The ocean's biological organic carbon pump regulates the
- NSF-PAR ID:
- 10459834
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 10
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 5361-5368
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract δ 13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ 13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ 13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ 13CDIC, Δ14C, andε 14C that are not recorded in observations. -
Abstract We determined the impact of anthropogenic CO2(Cant) accumulation on the δ13C of dissolved inorganic carbon in the Arctic Ocean (i.e., the13C Suess effect) based on δ13C measurements during a GEOTRACES cruise in 2015. The δ13C decrease was estimated from the amount of Cantchange derived by the transit time distribution approach and the ratio of the anthropogenic δ13C/dissolved inorganic carbon change (RC). A significant Cantincrease (up to 45 μmol kg−1) and δ13C decrease (up to −0.9‰) extends to ~2,000 m in the Canada and Makarov Basin. We find distinctly different RC values for the intermediate water (300–2,000 m) and upper halocline water (<200 m) of −0.020 and −0.012‰ (μmol kg−1)−1, respectively, which identifies two sources of Cantaccumulation from North Atlantic and North Pacific. Furthermore, estimated RC for intermediate waters is the same as the RC observed in the Greenland Sea and the rate of anthropogenic dissolved inorganic carbon increase estimated for intermediate waters at 0.9 μmol kg−1yr−1is identical to the estimated rate in the Iceland Sea. These observations indicate that the high rate of Cantaccumulation and δ13C decrease in the Arctic Ocean is primarily a result of the input of Cant, via ventilation of intermediate waters, from the Nordic Sea rather than local anthropogenic CO2uptake within the Arctic Basin. We determine the preindustrial δ13C (δ13CPI) distributions and find distinct δ13CPIsignatures of the intermediate and upper halocline waters that reflect the difference in δ13CPI–PO4relationship of Atlantic and Pacific source water.
-
Abstract The magnitude and distribution of the ocean's biological pump (the downward flux of organic carbon (OC) from the ocean surface) influences the pCO2of the atmosphere and the O2content of the deep sea, but has not been well quantified. We determine this flux in the ocean's five subtropical gyres using upper‐ocean oxygen mass balance and measurements of T, S, and pO2by autonomous profiling floats. Our results suggest that the biological OC pump is not globally uniform among the subtropical gyres: values in the North Pacific and Atlantic indicate distinct autotrophy (1–2 mol C m−2 yr−1) while near zero values in the S. Indian Ocean suggest the possibility of net heterotrophy. There is a correlation between the surface water iron/nitrate ratio and the magnitude of the biological pump suggesting an important role for nitrogen fixation in controlling the global distribution.
-
Abstract The13C/12C of dissolved inorganic carbon (
δ 13CDIC) carries valuable information on ocean biological C‐cycling, air‐sea CO2exchange, and circulation. Paleo‐reconstructions of oceanic13C from sediment cores provide key insights into past as changes in these three drivers. As a step toward full inclusion of13C in the next generation of Earth system models, we implemented13C‐cycling in a 1° lateral resolution ocean‐ice‐biogeochemistry Geophysical Fluid Dynamics Laboratory (GFDL) model driven by Common Ocean Reference Experiment perpetual year forcing. The model improved the mean of modernδ 13CDICover coarser resolution GFDL‐model implementations, capturing the Southern Ocean decline in surfaceδ 13CDICthat propagates to the deep sea via deep water formation. Controls onδ 13CDICof the deep‐sea are quantified using both observations and model output. The biological control is estimated from the relationship between deep‐sea Pacificδ 13CDICand phosphate (PO4). Theδ 13CDIC:PO4slope from observations is revised to a value of 1.01 ± 0.02‰ (μ mol kg−1)−1, consistent with a carbon to phosphate ratio of organic matter (C:Porg) of 124 ± 10. Model output yields a lowerδ 13CDIC:PO4than observed due to too low C:Porg. The ocean circulation impacts deep modernδ 13CDICin two ways, via the relative proportion of Southern Ocean and North Atlantic deep water masses, and via the preindustrialδ 13CDICof these water mass endmembers. Theδ 13CDICof the endmembers ventilating the deep sea are shown to be highly sensitive to the wind speed dependence of air‐sea CO2gas exchange. Reducing the coefficient for air‐sea gas exchange following OMIP‐CMIP6 protocols improves significantly surfaceδ 13CDICrelative to previous gas exchange parameterizations. -
Abstract All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022,
https://doi.org/10.1029/2021PA004339 ) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange.