skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Kinetic Model of Maleic Anhydride Grafting onto Poly(Propylene Carbonate) during Melt Compounding
Abstract

The functionalization of poly(propylene carbonate) (PPC) by means of both free radical and esterification grafting of Maleic anhydride (MAH) aided by a peroxide is simulated by means of a kinetic model. The amount of MAH grafted (Ag) measured from batch mixer trials shows good agreement with the simulated results. Sensitivity analysis of the different rate constants shows that peroxide decomposition is the factor that drives the reaction, meaning that the choice of initiator affects greatly the reaction conversion. The next most dominant reaction is the chain ends esterification. There is a competing effect between chain initiation and side reactions, however, chain initiation is slightly more dominant than the latter. It is also found that higher content of peroxide induces higherAg. The amount of MAH has a lower impact onAgat low peroxide concentration; however, it becomes more influential in the presence of more peroxide.

 
more » « less
PAR ID:
10459862
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Theory and Simulations
Volume:
28
Issue:
6
ISSN:
1022-1344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Halogen exchange in atom transfer radical polymerization (ATRP) is an efficient way to chain‐extend from a less active macroinitiator (MI) to a more active monomer. This has been previously achieved by using CuCl/L in the equimolar amount to Pn−Br MI in the chain extension step. However, this approach cannot be effectively applied in systems based on regeneration of activators (ARGET ATRP), since they operate with ppm amounts of catalysts. Herein, a catalytic halogen exchange procedure is reported using a catalytic amount of Cu in miniemulsion ARGET ATRP to chain‐extend from a less active poly(n‐butyl acrylate) (PBA) MI to a more active methyl methacrylate (MMA) monomer. Influence of different reagents on the initiation efficiency and dispersity is studied. Addition of 0.1mNaCl or tetraethylammonium chloride to ATRP of MMA initiated by methyl 2‐bromopropionate leads to high initiation efficiency and polymers with low dispersity. The optimized conditions are then employed in chain extension of PBA MI with MMA to prepare diblock and triblock copolymers.

     
    more » « less
  2. Abstract

    Lithium‐ion and sodium‐ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high‐performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2exhibits a specific capacity of 150 mAh g−1at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.

     
    more » « less
  3. Abstract

    The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higherTg. In this work, theTgs for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backboneTgfrom 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand theTgdependence on side chain cleavage. X‐ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancingTgand conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices.

     
    more » « less
  4. Abstract

    This study examines two factors impacting initiation of moist deep convection: free-tropospheric environmental relative humidity (ϕE) and horizontal scale of subcloud ascent (Rsub), the latter exerting a dominant control on cumulus cloud width. A simple theoretical model is used to formulate a “scale selection” hypothesis: that a minimumRsubis required for moist convection to go deep, and that this minimum scale decreases with increasingϕE. Specifically, the ratio ofto saturation deficit (1 −ϕE) must exceed a certain threshold value that depends on cloud-layer environmental lapse rate. Idealized, large-eddy simulations of moist convection forced by horizontally varying surface fluxes show strong sensitivity of maximum cumulus height to bothϕEandRsubconsistent with the hypothesis. IncreasingRsubby only 300–400 m can lead to a large increase (>5 km) in cloud height. A passive tracer analysis shows that the bulk fractional entrainment rate decreases rapidly withRsubbut depends little onϕE. However, buoyancy dilution increases as eitherRsuborϕEdecreases; buoyancy above the level of free convection is rapidly depleted in dry environments whenRsubis small. While deep convective initiation occurs with an increase in relative humidity of the near environment from moistening by earlier convection, the importance of this moisture preconditioning is inconclusive as it is accompanied by an increase inRsub. Overall, it is concluded that small changes toRsubdriven by external forcing or by convection itself could be a dominant regulator of deep convective initiation.

     
    more » « less
  5.  
    more » « less