skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: VHF and UHF Electromagnetic Radiation Produced by Streamers in Lightning
Abstract

In this letter, we report simulation results of streamer propagation and collision that produce electromagnetic radiation in the very high frequency (VHF) and ultra high frequency (UHF) bands. The streamers are initiated in overbreakdown field conditions, 1.5Ekand2Ek, respectively, which may be found during the corona flash stage of negative leader stepping processes. We find that while streamer propagation produces stronger VHF radiation, the head‐on collision of streamers dominates UHF, and even higher‐frequency radiation. Analysis of the energy spectral densities obtained from different simulation cases shows that the total length and radii of colliding streamers, as well as the ambient field, are important parameters for the UHF radiation produced by streamer collisions. The larger those parameters are, the stronger UHF radiation produced. Finally, by comparing with the measured spectral magnitude of lightning field in the VHF range, it is found that there are probably 105–107streamers involved during the lightning corona flash stage.

 
more » « less
PAR ID:
10459890
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
1
ISSN:
0094-8276
Page Range / eLocation ID:
p. 443-451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using a 30–250 MHz VHF interferometer, we observed a previously unreported mode of initial lightning development inside thunderclouds. This mode is defined by continuous VHF radiation spanning several km within the first few milliseconds of lightning initiation. Following flash initiation through fast positive breakdown at high altitudes above 9 km, the VHF radiation front of upward negative streamers ascended continuously at a speed of ∼1.0 × 106 m/s, forming a continuous initial breakdown burst (CIBB) about 2 km in length. For the two CIBBs analyzed, the long and narrow CIBB channel was traversed by dart leaders that occurred later in the flash, indicating that the CIBB channel belongs to what becomes the main conducting leader channel. In contrast to classic initial breakdown pulses (IBPs) with sub‐pulses superimposed on the rising edge, CIBBs produced a series of discrete, narrow LF pulses (<10 μs) with an average time interval of 0.20 and 0.14 ms, respectively. We speculate that a CIBB is a continuously developing negative streamer system in the high electric field region at high altitudes, with connections of internal plasma channels producing LF pulses. These results have implications for physical conditions conducive to the formation of a long and continuous negative streamer system.

     
    more » « less
  2. Abstract

    Based on experimental results of recent years, this article presents a qualitative description of a possible mechanism (termed the Mechanism) covering the main stages of lightning initiation, starting before and including the initiating event, followed by the initial electric field change (IEC), followed by the first few initial breakdown pulses (IBPs). The Mechanism assumes initiation occurs in a region of ~1 km3with average electric fieldE > 0.3 MV/(m·atm), which contains, because of turbulence, numerous small “Ethvolumes” of ~10−4–10−3 m3withE ≥ 3 MV/(m·atm). The Mechanism allows for lightning initiation by either of two observed types of events: a high‐power, very high frequency (VHF) event such as a Narrow Bipolar Event or a weak VHF event. According to the Mechanism, both types of initiating events are caused by a group of relativistic runaway electron avalanche particles (where the initial electrons are secondary particles of an extensive air shower) passing through manyEthvolumes, thereby causing the nearly simultaneous launching of many positive streamer flashes. Due to ionization‐heating instability, unusual plasma formations (UPFs) appear along the streamers' trajectories. These UPFs combine into three‐dimensional (3‐D) networks of hot plasma channels during the IEC, resulting in its observed weak current flow. The subsequent development and combination of two (or more) of these 3‐D networks of hot plasma channels then causes the first IBP. Each subsequent IBP is caused when another 3‐D network of hot plasma channels combines with the chain of networks caused by earlier IBPs.

     
    more » « less
  3. Abstract

    This paper reports a study to understand the radio spectrum of thunderstorm narrow bipolar events (NBEs) or compact intracloud discharges, which are powerful sources of high‐frequency (HF) and very high frequency (VHF) electromagnetic radiation. The radio spectra from 10 kHz to about 100 MHz are obtained for three NBEs, including one caused by fast positive breakdown and two by fast negative breakdown. The results indicate that the two polarities of fast breakdown have similar spectra, with a relatively flat spectrum in the HF and VHF band. The ratio of energy spectral densities in the very low frequency and HF bands is (0.9–5) × 105. We develop a statistical modeling approach to investigate if a system of streamers can explain the main features of fast breakdown. Assuming that the current moment peak and charge moment change of individual streamers vary in the ranges of 5–10 A‐m and 5–20 μC‐m, respectively, the modeling results indicate that a system of 107–108streamers can reproduce the current moment, charge transfer, and radio spectrum of fast breakdown. The rapid current variation on a time scale of nanoseconds required for fast breakdown to produce strong HF/VHF emissions is provided by exponentially accelerating and expanding streamers. Our study therefore supports the hypothesis that fast breakdown is a system of streamers. Finally, suggestions are given regarding future streamer simulations and NBE measurements in order to further develop our understanding of NBEs and lightning initiation.

     
    more » « less
  4. Abstract

    Evidence of positive polarity dominated streamers preceding fast negative breakdown (FNB) and of simultaneous positive and negative polarity streamer development in lightning initiation is reported. Observations of lightning initiation as FNB have remained a puzzle because simulations of lightning initiation have shown that negative streamers are not produced in virgin air without simultaneous positive streamers. Here, the authors observe positive streamer development forms first or at least simultaneously with negative streamers. Further evidence comes from observations of mixed fast breakdown (FB). The overall trajectory of the positive breakdown during such mixed events indicates that the positive streamers continuously propagate during the burst of strong negative breakdown. These observations indicate that even when negative streamers dominate the overall very high frequency (VHF) emissions, both positive and negative streamers are propagating simultaneously from the initiation point. These findings on the structure and dynamics of FB provide key new insight to our understanding of lightning initiation.

     
    more » « less
  5. Abstract

    Brief bursts of high‐frequency (HF) and very high frequency (VHF) radio emissions unaccompanied by strong low‐frequency radiation have been observed during initiation and propagation of lightning or thunderstorm electrical breakdown without leading to fully fledged lightning. This paper investigates a physical mechanism to generate such radio bursts by electrical discharge activity inside a thundercloud. When a discharge consists of many high‐frequency emission sources, such as streamers, that generate currents in random directions, its radiation spectrum peaks in the HF and VHF bands, and the spectral magnitudes in low frequencies are much smaller or even negligible. Combined with recent observational findings, the present study suggests that lightning initiation may begin with a short burst of many randomly occurring small‐scale discharges in a localized thundercloud region.

     
    more » « less