Airway obstruction conditions are relatively rarely observed in clinical settings but nevertheless, extremely challenging to handle, especially when observed in pediatric patients. Several surgical procedures, including tracheal resection, end-to-end tracheal anastomosis, and tracheoplasty, have been developed and practised of late, to treat airway obstruction. However, the clinical outcome is typically not satisfactory due to airway restenosis conditions that develop following surgery. Various types of stents are currently available for airway stenting ranging from non-degradable silicone tubes and bio-inert metallic stents (bare or coated with polymer matrix) to hybrid silicone tubes strengthened by metallic cores, but none of the stents provides the satisfactory long-term effectiveness. Therefore, there is a significant clinical need for a biodegradable airway stent that would maintain airway patency and totally degrade over time after meeting the desired objectives. The present study aims to investigate biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloy as a potential tracheal stent. The new AZXM alloy was fabricated by partially replacing aliminum in commercial AZ31 alloy with calcium. The present study demonstrates that calcium preferentially segregates along the grain boundaries as intermetallic phases (Mg2Ca) and is homogeneously distributed in the magnesium matrix. The extruded AZXM alloy showed less pitting, higher corrosion resistance in Hank's Balanced Salt Solution (HBSS) compared to the as-cast and solution-treated AZXM alloys and exhibited optimized mechanical properties. In vitro cytotoxicity evaluation using human trachea epithelial cells demonstrated excellent cyto-compatibility of AZXM alloys compared to pure Mg and commercial AZ31 validated by a very preliminary rabbit in vivo tracheal model study. Preliminary results show that the approach to use biodegradable AZXM alloys as a tracheal stent is indeed promising, although further alloy processing is required to improve the ductility needed followed by a more exhaustive in vivo study to demonstrate full viability for stent applications.
Tracheal stenting currently using non‐degradable stents is commonplace for treatment of trauma, prolonged intubation related adult airway obstructions, and pediatric patients‐associated tracheal stenosis conditions. Degradable tracheal stent placement will avoid complications of stent removal and restenosis. Widespread reports exist on degradable magnesium alloys success for orthopedic and cardiovascular applications but none to date for intra tracheal use. This research explores the use of pure Mg, AZ31, and Mg‐3Y alloys for degradable tracheal stent assessment.
- PAR ID:
- 10459948
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Biomedical Materials Research Part B: Applied Biomaterials
- Volume:
- 107
- Issue:
- 6
- ISSN:
- 1552-4973
- Page Range / eLocation ID:
- p. 1844-1853
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For degradable magnesium (Mg) alloy‐based stents it would be desirable to delay early corrosion to maintain mechanical strength. Similarly, early after stent placement reduced thrombogenicity is an important feature, while chronically, endothelial cell adhesion and vessel integration are desirable. In this study, surface eroding polymers of amino‐grafted poly(1,3‐trimethylene carbonate) (PTMC‐NH2) and PTMC‐NH2combined with sulfobetaine bearing polymer PSB (PTMC‐NHCO‐PSB) are developed, and these polymers are covalently attached onto 6‐phosphonohexanoic acid (PHA)‐coated AZ31 Mg alloy surfaces in sequence. In vitro degradation testing in ovine plasma shows PTMC, PTMC‐NH2, and PTMC‐NHCO‐PSB cast films experience a gradual thickness and mass loss with maintenance of smooth surfaces, confirming surface erosion behavior. The PTMC‐NH2polymer is firmly bound to the PHA‐modified AZ31 surface and demonstrates a resistance to peeling. PTMC, PTMC‐NH2, and PTMC‐NHCO‐PSB coated AZ31 have a lower corrosion rate versus polylactide‐
co ‐glycolide coated and untreated AZ31. PTMC‐NHCO‐PSB coated AZ31 inhibits platelet deposition and smooth muscle cell adhesion and growth, but after 2‐week immersion in plasma, this surface supports endothelial cell adhesion and growth. These results suggest PTMC‐NHCO‐PSB surface eroding coating offers a means of controlling corrosion while providing a temporally varying bio‐functionality for biodegradable vascular stent applications. -
Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow. The results from attachment and viability tests showed that more cells were attached on the polymer-coated Mg alloys than on non-coated Mg alloys in both static and dynamic conditions. In particular, the attachment and viability on PCUU-coated surfaces were significantly higher than that of PLGA-coated surfaces of WE43 and ZWEKC in both static and dynamic conditions, and of AZ31 in dynamic conditions (P<0.05). The elementary distribution map showed that there were relatively higher Carbon weight percentages and lower Mg weight percentages on PCUU-coated alloys than PLGA-coated alloys. Various levels of pittings were observed underneath the polymer coatings, and the pittings were more severe on the surface of Mg alloys that corroded rapidly. Polymer coatings are recommended to be applied on Mg alloys with relatively low corrosion rates, or after pre-stabilizing the substrate. PCUU-coating has more selective potential to enhance the biocompatibility and mitigate the endothelium damage of Mg alloy stenting.more » « less
-
Abstract The aim of this study was to develop a novel biodegradable magnesium (Mg) alloy for bone implant applications. We used scandium (Sc; 2 wt %) and strontium (Sr; 2 wt %) as alloying elements due to their high biocompatibility, antibacterial efficacy, osteogenesis, and protective effects against corrosion. In the present work, we also examined the effect of a heat treatment process on the properties of the Mg‐Sc‐Sr alloy. Alloys were manufactured using a metal casting process followed by heat treatment. The microstructure, corrosion, mechanical properties, antibacterial activity, and osteogenic activity of the alloy were assessed in vitro. The results showed that the incorporation of Sc and Sr elements controlled the corrosion, reduced the hydrogen generation, and enhanced mechanical properties. Furthermore, alloying with Sc and Sr demonstrated a significantly enhanced antibacterial activity and decreased biofilm formation compared to control Mg. Also, culturing Mg‐Sc‐Sr alloy with human bone marrow‐derived mesenchymal stromal cells showed a high degree of biocompatibility (>90% live cells) and a significant increase in osteoblastic differentiation in vitro shown by Alizarin red staining and alkaline phosphatase activity. Based on these results, the Mg‐Sc‐Sr alloy heat‐treated at 400°C displayed optimal mechanical properties, corrosion rate, antibacterial efficacy, and osteoinductivity. These characteristics make the Mg‐Sc‐Sr alloy a promising candidate for biodegradable orthopedic implants in the fixation of bone fractures such as bone plate‐screws or intramedullary nails.
-
Biodegradable magnesium (Mg) alloys exhibit improved mechanical properties compared to degradable polymers while degrading in vivo circumventing the complications of permanent metals, obviating the need for surgical removal. This study investigated the safety and efficacy of Mg-Y-Zn-Zr-Ca (WZ42) alloy compared to non-degradable Ti6Al4V over a 14-week follow-up implanted as pins to fix a full osteotomy in rat femurs and as wires wrapped around the outside of the femurs as a cerclage. We used a fully load bearing model allowing implants to intentionally experience realistic loads without immobilization. To assess systemic toxicity, blood cell count and serum biochemical tests were performed. Livers and kidneys were harvested to observe any accumulation of alloying elements. Hard and soft tissues adjacent to the fracture site were also histologically examined. Degradation behavior and bone morphology were determined using micro-computed tomography scans. Corrosion occurred gradually, with degradation seen after two weeks of implantation with points of high stress observed near the fracture site ultimately resulting in WZ42 alloy pin fracture. At 14 weeks however, normal bone healing was observed in femurs fixed with the WZ42 alloy confirmed by the presence of osteoid, osteoblast activity, and new bone formation. Blood testing exhibited no significant changes arising from the WZ42 alloy compared to the two control groups. No recognizable differences in the morphology and more importantly, no accumulation of Mg, Zn, and Ca in the kidney and liver of rats were observed. These load bearing model results collectively taken, thus demonstrate the feasibility for use of the Mg-Y-Zn-Zr-Ca alloy for long bone fracture fixation applications.