skip to main content


Title: CA3 place cells that represent a novel waking experience are preferentially reactivated during sharp wave‐ripples in subsequent sleep
Abstract

A popular model of memory consolidation posits that recent memories stored in the hippocampus are reactivated during sleep and thereby transferred to neocortex for long‐term storage. This process is thought to occur during sharp wave‐ripples (SWRs) in nonrapid eye movement sleep (NREM). However, whether the hippocampus consolidates all recent memories in the same manner remains unclear. An efficient memory system may extract novel information from recent experiences for preferential consolidation. In the hippocampus, memories are thought to be stored initially in CA3. Therefore, CA3 place cells that encode novel experiences may be preferentially reactivated during SWRs in subsequent sleep. To test this hypothesis, we recorded CA3 place cells in rats during exposure to a familiar and a novel environment and during subsequent overnight sleep. We found that CA3 place cells that preferentially coded a novel environment showed larger firing rate increases during SWRs in NREM than place cells that preferentially coded a familiar environment. Moreover, CA3 place cell ensembles replayed trajectories from a novel environment during NREM with higher fidelity than trajectories from a familiar environment. Together, these results suggest that CA3 representations of novel experiences are preferentially processed during subsequent sleep.

 
more » « less
NSF-PAR ID:
10459955
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hippocampus
Volume:
29
Issue:
10
ISSN:
1050-9631
Page Range / eLocation ID:
p. 921-938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    During spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during ‘offline’ resting periods, brief neuronal population bursts can ‘replay’ sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment. The neural circuit mechanisms underlying this variable and flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network model of hippocampal area CA3 that experimental constraints on network dynamics such as population sparsity, stimulus selectivity, rhythmicity and spike rate adaptation, as well as associative synaptic connectivity, enable additional emergent properties, including variable offline memory replay. In an online stimulus‐driven state, we observed the emergence of neuronal sequences that swept from representations of past to future stimuli on the timescale of the theta rhythm. In an offline state driven only by noise, the network generated both forward and reverse neuronal sequences, and recapitulated the experimental observation that offline memory replay events tend to include salient locations like the site of a reward. These results demonstrate that biological constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of sensory events stored in the strengths of synaptic connections to be flexibly read out during rest and sleep, which is thought to be important for memory consolidation and planning of future behaviour.image

    Key points

    A recurrent spiking network model of hippocampal area CA3 was optimized to recapitulate experimentally observed network dynamics during simulated spatial exploration.

    During simulated offline rest, the network exhibited the emergent property of generating flexible forward, reverse and mixed direction memory replay events.

    Network perturbations and analysis of model diversity and degeneracy identified associative synaptic connectivity and key features of network dynamics as important for offline sequence generation.

    Network simulations demonstrate that population over‐representation of salient positions like the site of reward results in biased memory replay.

     
    more » « less
  2. Abstract

    During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, “up-states” and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial–hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.

     
    more » « less
  3. The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations. 
    more » « less
  4. null ; Mangun, G.R. ; Gazzaniga, M.S. (Ed.)
    The human ability to remember unique experiences from many years ago comes so naturally that we often take it for granted. It depends on three stages: (1) encoding, when new information is initially registered, (2) storage, when encoded information is held in the brain, and (3) retrieval, when stored information is used. Historically, cognitive neuroscience studies of memory have emphasized encoding and retrieval. Yet, the intervening stage may hold the most intrigue, and has become a major research focus in the years since the last edition of this book. Here we describe recent investigations of post-acquisition memory processing in relation to enduring storage. This evidence of memory processing belies the notion that memories stored in the brain are held in stasis, without changing. Various methods for influencing and monitoring brain activity have been applied to study offline memory processing. In particular, memories can be reactivated during sleep and during resting periods, with distinctive physiological correlates. These neural signals shed light on the contribution of hippocampal-neocortical interactions to memory consolidation. Overall, results converge on the notion that memory reactivation is a critical determinant of systems-level consolidation, and thus of future remembering, which in turn facilitates future planning and problem solving. 
    more » « less
  5. Abstract

    Hippocampal sharp‐wave ripples (SWRs) support the reactivation of memory representations, relaying information to neocortex during “offline” and sleep‐dependent memory consolidation. While blockade of NMDA receptors (NMDAR) is known to affect both learning and subsequent consolidation, the specific contributions of NMDAR activation to SWR‐associated activity remain unclear. Here, we combine biophysical modeling with in vivo local field potential (LFP) and unit recording to quantify changes in SWR dynamics following inactivation of NMDAR. In a biophysical model of CA3‐CA1 SWR activity, we find that NMDAR removal leads to reduced SWR density, but spares SWR properties such as duration, cell recruitment and ripple frequency. These predictions are confirmed by experiments in which NMDAR‐mediated transmission in rats was inhibited using three different NMDAR antagonists, while recording dorsal CA1 LFP. In the model, loss of NMDAR‐mediated conductances also induced a reduction in the proportion of cell pairs that co‐activate significantly above chance across multiple events. Again, this prediction is corroborated by dorsal CA1 single‐unit recordings, where the NMDAR blocker ketamine disrupted correlated spiking during SWR. Our results are consistent with a framework in which NMDA receptors both promote activation of SWR events and organize SWR‐associated spiking content. This suggests that, while SWR are short‐lived events emerging in fast excitatory‐inhibitory networks, slower network components including NMDAR‐mediated currents contribute to ripple density and promote consistency in the spiking content across ripples, underpinning mechanisms for fine‐tuning of memory consolidation processes.

     
    more » « less