skip to main content


Title: Nodule‐specific PLAT domain proteins are expanded in the Medicago lineage and required for nodulation
Summary

Symbiotic nitrogen fixation in legumes is mediated by an interplay of signaling processes between plant hosts and rhizobial symbionts. In legumes, several secreted protein families have undergone expansions and play key roles in nodulation. Thus, identifying lineage‐specific expansions (LSEs) of nodulation‐associated genes can be a strategy to discover candidate gene families.

Using bioinformatic tools, we identified 13LSEs of nodulation‐related secreted protein families, each unique to eitherGlycine,ArachisorMedicagolineages. In theMedicagolineage, nodule‐specific Polycystin‐1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPDs) expanded to five members. We examinedNPDfunction usingCRISPR/Cas9 multiplex genome editing to createMedicago truncatulaNPDknockout lines, targeting one to fiveNPDgenes.

Mutant lines with differing combinations ofNPDgene inactivations had progressively smaller nodules, earlier onset of nodule senescence, or ineffective nodules compared to the wild‐type control. Double‐ and triple‐knockout lines showed dissimilar nodulation phenotypes but coincided in upregulation of aDHHC‐type zinc finger and an aspartyl protease gene, possible candidates for the observed disturbance of proper nodule function.

By postulating that gene family expansions can be used to detect candidate genes, we identified a family of nodule‐specificPLATdomain proteins and confirmed that they play a role in successful nodule formation.

 
more » « less
NSF-PAR ID:
10459989
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
222
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1538-1550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nodule number regulation in legumes is controlled by a feedback loop that integrates nutrient and rhizobia symbiont status signals to regulate nodule development. Signals from the roots are perceived by shoot receptors, including a CLV1-like receptor-like kinase known as SUNN in Medicago truncatula. In the absence of functional SUNN, the autoregulation feedback loop is disrupted, resulting in hypernodulation. To elucidate early autoregulation mechanisms disrupted in SUNN mutants, we searched for genes with altered expression in the loss-of-function sunn-4 mutant and included the rdn1-2 autoregulation mutant for comparison. We identified constitutively altered expression of small groups of genes in sunn-4 roots and in sunn-4 shoots. All genes with verified roles in nodulation that were induced in wild-type roots during the establishment of nodules were also induced in sunn-4, including autoregulation genes TML2 and TML1. Only an isoflavone-7-O-methyltransferase gene was induced in response to rhizobia in wild-type roots but not induced in sunn-4. In shoot tissues of wild-type, eight rhizobia-responsive genes were identified, including a MYB family transcription factor gene that remained at a baseline level in sunn-4; three genes were induced by rhizobia in shoots of sunn-4 but not wild-type. We cataloged the temporal induction profiles of many small secreted peptide (MtSSP) genes in nodulating root tissues, encompassing members of twenty-four peptide families, including the CLE and IRON MAN families. The discovery that expression of TML2 in roots, a key factor in inhibiting nodulation in response to autoregulation signals, is also triggered in sunn-4 in the section of roots analyzed, suggests that the mechanism of TML regulation of nodulation in M. truncatula may be more complex than published models. 
    more » « less
  2. Abstract

    In the legume‐rhizobia mutualism, the benefit each partner derives from the other depends on the genetic identity of both host and rhizobial symbiont. To gain insight into the extent of genome × genome interactions on hosts at the molecular level and to identify potential mechanisms responsible for the variation, we examined host gene expression within nodules (the plant organ where the symbiosis occurs) of four genotypes ofMedicago truncatulagrown with eitherEnsifer melilotiorE. medicaesymbionts. These host × symbiont combinations show significant variation in nodule and biomass phenotypes. Likewise, combinations differ in their transcriptomes: host, symbiont and host × symbiont affected the expression of 70%, 27% and 21%, respectively, of the approximately 27,000 host genes expressed in nodules. Genes with the highest levels of expression often varied between hosts and/or symbiont strain and include leghemoglobins that modulate oxygen availability and hundreds of Nodule Cysteine‐Rich (NCR) peptides involved in symbiont differentiation and viability in nodules. Genes with host × symbiont‐dependent expression were enriched for functions related to resource exchange between partners (sulphate/iron/amino acid transport and dicarboxylate/amino acid synthesis). These enrichments suggest mechanisms for host control of the currencies of the mutualism. The transcriptome ofM. truncatulaaccessionHM101 (A17), the reference genome used for most molecular research, was less affected by symbiont identity than the other hosts. These findings underscore the importance of assessing the molecular basis of variation in ecologically important traits, particularly those involved in biotic interactions, in multiple genetic contexts.

     
    more » « less
  3. Summary

    Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology.

    We compared the genomes of Glomerales (Rhizophagus irregularis,Rhizophagus diaphanus,Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota,to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle.

    Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein‐coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis‐related genes inR. irregularisandG. roseaare specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation.

    The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis‐related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology ofAMfungi.

     
    more » « less
  4. Summary

    From a single transgenic line harboring fiveTnt1transposon insertions, we generated a near‐saturated insertion population inMedicago truncatula. Using thermal asymmetric interlaced‐polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population.FSTrecovery from 14Tnt1lines using the whole‐genome sequencing (WGS) and/orTnt1‐capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference ofTnt1insertions showed thatTnt1is overall randomly distributed throughout theM. truncatulagenome. At the chromosomal level,Tnt1insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with theGCcontent. Based on 174 546 filteredFSTs that show exact insertion locations in theM. truncatulagenome version 4.0 (Mt4.0), 0.44Tnt1insertions occurred per kb, and 19 583 genes containedTnt1with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed thatTnt1‐inserted genes are significantly enriched in processes associated with ‘stress’, ‘transport’, ‘signaling’ and ‘stimulus response’. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583Tnt1‐inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide‐binding site‐leucine‐rich repeat genes harbored at least oneTnt1insertion, compared with the overall 38% ofTnt1‐inserted genes out of 50 894 annotated genes in the genome.

     
    more » « less
  5. Summary

    Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.

    We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.

    Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.

    Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD.

     
    more » « less