skip to main content


Title: Dynamical Coupling Between Hurricane Matthew and the Middle to Upper Atmosphere via Gravity Waves
Abstract

During 30 September to 9 October 2016, Hurricane Matthew traversed the Caribbean Sea to the east coast of the United States. During its period of greatest intensity, in the central Caribbean, Matthew excited a large number of concentric gravity waves (GWs or CGWs). In this paper, we report on hurricane‐generated CGWs observed in both the stratosphere and mesosphere from spaceborne satellites and in the ionosphere by ground Global Positioning System receivers. We found CGWs with horizontal wavelengths of ~200–300 km in the stratosphere (height of ~30–40 km) and in the airglow layer of the mesopause (height of ~85–90 km), and we found concentric traveling ionospheric disturbances (TIDs or CTIDs) with horizontal wavelengths of ~250–350 km in the ionosphere (height of ~100–400 km). The observed TIDs lasted for more than several hours on 1, 2, and 7 October 2016. We also briefly discuss the vertical and horizontal propagation of the Hurricane Matthew‐induced GWs and TIDs. This study shows that Hurricane Matthew induced significant dynamical coupling between the troposphere and the entire middle and upper atmosphere via GWs. It is the first comprehensive satellite analysis of gravity wave propagation generated by hurricane event from the troposphere through the stratosphere and mesosphere into the ionosphere.

 
more » « less
Award ID(s):
1834222
NSF-PAR ID:
10460142
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
5
ISSN:
2169-9380
Page Range / eLocation ID:
p. 3589-3608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The satellite‐based Cloud Imaging and Particle Size (CIPS) instrument and Atmospheric Infrared Sounder (AIRS) observed concentric gravity waves (GWs) generated by Typhoon Yutu in late October 2018. This work compares CIPS and AIRS nadir viewing observations of GWs at altitudes of 50–55 and 30–40 km, respectively, to simulations from the high‐resolution European Centre for Medium‐Range Weather Forecasting Integrated Forecasting System (ECMWF‐IFS) and ECMWF reanalysis v5 (ERA5). Both ECMWF‐IFS with 9 km and ERA5 with 31 km horizontal resolution show concentric GWs at similar locations and timing as the AIRS and CIPS observations. The GW wavelengths are ∼225–236 km in ECMWF‐IFS simulations, which compares well with the wavelength inferred from the observations. After validation of ECMWF GWs, five category five typhoon events during 2018 are analyzed using ECMWF to obtain characteristics of concentric GWs in the Western Pacific regions. The amplitudes of GWs in the stratosphere are not strongly correlated with the strength of typhoons, but are controlled by background wind conditions. Our results confirm that amplitudes and shapes of concentric GWs observed in the stratosphere and lowermost mesosphere are heavily influenced by the background wind conditions.

     
    more » « less
  2. Abstract

    We analyze quiet‐time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes atz≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross‐track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengthsλH = 170–1,850 km, intrinsic periodsτIr = 11–54 min, intrinsic horizontal phase speedscIH = 245–630 m/s, and density perturbations 0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated atz∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher‐order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher‐order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet‐time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere.

     
    more » « less
  3. Abstract

    We examine the total electron content (TEC) from GPS receivers over the United States on March 25–26, 2015. We observe partial to nearly fully concentric rings of traveling ionospheric disturbances (TIDs) with centers close to deep convection. Many of these TIDs have observed horizontal phase speedscH > 300 m/s, suggesting they are induced by gravity waves (GWs) created in the thermosphere. We investigate the largest‐amplitude concentric TIDs at 23:00 UT on March 25 and 01:20 UT on March 26. We find thatcHand the GW periodτrincrease linearly with radius and the horizontal wavelength,λH, increases quadratically with radius. This is expected if the GWs are excited by point sources. For these GWs,cH = 150–530 m/s,τr ∼ 8–40 min, andλH ∼ 100–500 km. Using reverse ray‐tracing, no GW withcH > 200 m/s propagates belowz = 100 km, 73% of the GWs in the first case cannot propagate belowz ∼ 100 km, all of the GWs in the second case cannot propagate belowz ∼ 100 km, and the inferred thermospheric point sources are ∼2–4° from deep convection. Because the underlying GWs are most likely excited by a point source and most must be created in the thermosphere, we find that these concentric TIDs are most likely induced by GWs generated in the thermosphere, including those withcH = 150–200 m/s. Their close proximity to deep convection and the TEC map asymmetries suggest these TIDs are likely induced by secondary GWs from local horizontal body forces created by the dissipation of primary GWs from deep convection.

     
    more » « less
  4. Abstract

    A new Cloud Imaging and Particle Size (CIPS) gravity wave (GW) variance data set is available that facilitates automated analysis of GWs entering the mesosphere. This work examines several years of CIPS GW variances from 50 to 55 km in the context of the Arctic and Antarctic polar vortices. CIPS observes highest GW activity in the vortex edge region where horizontal wind speeds are largest, consistent with previously published GW climatologies in the stratosphere and mesosphere. CIPS observes the well‐documented planetary wave (PW)‐1 patterns in GW activity in both hemispheres. In the Northern Hemisphere, maximum GW activity occurs over the North Atlantic and western Europe. In the Southern Hemisphere, maximum GW activity stretches from the Andes over the South Atlantic and Indian Oceans, as expected. In the NH, CIPS GW spatial patterns are highly correlated with horizontal wind speed. In the SH, CIPS GW patterns are less positively correlated with the winds due to increased zonal symmetry and orographic forcing. The Andes Mountains and Antarctic Peninsula, South Georgia Island, Kerguelen/Heard Islands, New Zealand, and Tasmania are persistent sources of orographic GWs. Atmospheric Infrared sounder observations of stratospheric GWs are analyzed alongside CIPS to explore vertical GW coherence and to infer GW propagation and sources. NH midlatitude GW activity is reduced during the January 2021 SSW, as expected. This reduction in GWs leads to a simultaneous reduction in traveling ionospheric disturbances (TIDs), providing more evidence that weak polar vortex events with weak GW activity leads to reduced daytime TID activity.

     
    more » « less
  5. Abstract

    We investigate the effects on the mesosphere and thermosphere from a strong mountain wave (MW) event over the wintertime Southern Andes using a gravity wave (GW)‐resolving global circulation model. During this event, MWs break and attenuate atz∼50–80 km, thereby creating local body forces that generate large‐scale secondary GWs having concentric ring structure with horizontal wavelengthsλH=500–2,000 km, horizontal phase speedscH=70–100 m/s, and periodsτr∼3–10 hr. These secondary GWs dissipate in the upper mesosphere and thermosphere, thereby creating local body forces. These forces have horizontal sizes of 180–800 km, depending on the constructive/destructive interference between wave packets and the overall sizes of the wave packets. The largest body force is atz=80–130 km, has an amplitude of ∼2,400 m/s/day, and is located ∼1,000 km east of the Southern Andes. This force excites medium‐ and large‐scale “tertiary GWs” having concentric ring structure, withλHincreasing with radius from the centers of the rings. Near the Southern Andes, these tertiary GWs havecH=120–160 m/s,λH=350–2,000 km, andτr∼4–9 hr. Some of the larger‐λHtertiary GWs propagate to the west coast of Africa with very large phase speeds ofcH≃420 m/s. The GW potential energy density increases exponentially atz∼95–115 km, decreases atz∼115–125 km where most of the secondary GWs dissipate, and increases again atz>125 km from the tertiary GWs. Thus, strong MW events result in the generation of medium‐ to large‐scale fast tertiary GWs in the mesosphere and thermosphere via this multistep vertical coupling mechanism.

     
    more » « less