skip to main content


Title: Intermittently tagged real‐time MRI reveals internal tongue motion during speech production
Purpose

To demonstrate a tagging method compatible with RT‐MRI for the study of speech production.

Methods

Tagging is applied as a brief interruption to a continuous real‐time spiral acquisition. Tagging can be initiated manually by the operator, cued to the speech stimulus, or be automatically applied with a fixed frequency. We use a standard 2D 1‐3‐3‐1 binomial SPAtial Modulation of Magnetization (SPAMM) sequence with 1 cm spacing in both in‐plane directions. Tag persistence in tongue muscle is simulated and validated in vivo. The ability to capture internal tongue deformations is tested during speech production of American English diphthongs in native speakers.

Results

We achieved an imaging window of 650‐800 ms at 1.5T, with imaging signal to noise ratio ≥ 17 and tag contrast to noise ratio ≥ 5 in human tongue, providing 36 frames/s temporal resolution and 2 mm in‐plane spatial resolution with real‐time interactive acquisition and view‐sharing reconstruction. The proposed method was able to capture tongue motion patterns and their relative timing with adequate spatiotemporal resolution during the production of American English diphthongs and consonants.

Conclusion

Intermittent tagging during real‐time MRI of speech production is able to reveal the internal deformations of the tongue. This capability will allow new investigations of valuable spatiotemporal information on the biomechanics of the lingual subsystems during speech without reliance on binning speech utterance repetition.

 
more » « less
NSF-PAR ID:
10460143
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Magnetic Resonance in Medicine
Volume:
82
Issue:
2
ISSN:
0740-3194
Page Range / eLocation ID:
p. 600-613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objectives

    To evaluate a novel method for real‐time tagged MRI with increased tag persistence using phase sensitive tagging (REALTAG), demonstrated for speech imaging.

    Methods

    Tagging is applied as a brief interruption to a continuous real‐time spiral acquisition. REALTAG is implemented using a total tagging flip angle of 180° and a novel frame‐by‐frame phase sensitive reconstruction to remove smooth background phase while preserving the sign of the tag lines. Tag contrast‐to‐noise ratio of REALTAG and conventional tagging (total flip angle of 90°) is simulated and evaluated in vivo. The ability to extend tag persistence is tested during the production of vowel‐to‐vowel transitions by American English speakers.

    Results

    REALTAG resulted in a doubling of contrast‐to‐noise ratio at each time point and increased tag persistence by more than 1.9‐fold. The tag persistence was 1150 ms with contrast‐to‐noise ratio >6 at 1.5T, providing 2 mm in‐plane resolution, 179 frames/s, with 72.6 ms temporal window width, and phase sensitive reconstruction. The new imaging window is able to capture internal tongue deformation over word‐to‐word transitions in natural speech production.

    Conclusion

    Tag persistence is substantially increased in intermittently tagged real‐time MRI by using the improved REALTAG method. This makes it possible to capture longer motion patterns in the tongue, such as cross‐word vowel‐to‐vowel transitions, and provides a powerful new window to study tongue biomechanics.

     
    more » « less
  2. Purpose

    To provide 3D real‐time MRI of speech production with improved spatio‐temporal sharpness using randomized, variable‐density, stack‐of‐spiral sampling combined with a 3D spatio‐temporally constrained reconstruction.

    Methods

    We evaluated five candidate (k,t) sampling strategies using a previously proposed gradient‐echo stack‐of‐spiral sequence and a 3D constrained reconstruction with spatial and temporal penalties. Regularization parameters were chosen by expert readers based on qualitative assessment. We experimentally determined the effect of spiral angle increment andkztemporal order. The strategy yielding highest image quality was chosen as the proposed method. We evaluated the proposed and original 3D real‐time MRI methods in 2 healthy subjects performing speech production tasks that invoke rapid movements of articulators seen in multiple planes, using interleaved 2D real‐time MRI as the reference. We quantitatively evaluated tongue boundary sharpness in three locations at two speech rates.

    Results

    The proposed data‐sampling scheme uses a golden‐angle spiral increment in thekxkyplane and variable‐density, randomized encoding alongkz. It provided a statistically significant improvement in tongue boundary sharpness score (P < .001) in the blade, body, and root of the tongue during normal and 1.5‐times speeded speech. Qualitative improvements were substantial during natural speech tasks of alternating high, low tongue postures during vowels. The proposed method was also able to capture complex tongue shapes during fast alveolar consonant segments. Furthermore, the proposed scheme allows flexible retrospective selection of temporal resolution.

    Conclusion

    We have demonstrated improved 3D real‐time MRI of speech production using randomized, variable‐density, stack‐of‐spiral sampling with a 3D spatio‐temporally constrained reconstruction.

     
    more » « less
  3. Purpose

    To develop and evaluate a technique for 3D dynamic MRI of the full vocal tract at high temporal resolution during natural speech.

    Methods

    We demonstrate 2.4 × 2.4 × 5.8 mm3spatial resolution, 61‐ms temporal resolution, and a 200 × 200 × 70 mm3FOV. The proposed method uses 3D gradient‐echo imaging with a custom upper‐airway coil, a minimum‐phase slab excitation, stack‐of‐spirals readout, pseudo golden‐angle view order inkxky, linear Cartesian order alongkz, and spatiotemporal finite difference constrained reconstruction, with 13‐fold acceleration. This technique is evaluated using in vivo vocal tract airway data from 2 healthy subjects acquired at 1.5T scanner, 1 with synchronized audio, with 2 tasks during production of natural speech, and via comparison with interleaved multislice 2D dynamic MRI.

    Results

    This technique captured known dynamics of vocal tract articulators during natural speech tasks including tongue gestures during the production of consonants “s” and “l” and of consonant–vowel syllables, and was additionally consistent with 2D dynamic MRI. Coordination of lingual (tongue) movements for consonants is demonstrated via volume‐of‐interest analysis. Vocal tract area function dynamics revealed critical lingual constriction events along the length of the vocal tract for consonants and vowels.

    Conclusion

    We demonstrate feasibility of 3D dynamic MRI of the full vocal tract, with spatiotemporal resolution adequate to visualize lingual movements for consonants and vocal tact shaping during natural productions of consonant–vowel syllables, without requiring multiple repetitions.

     
    more » « less
  4. Purpose

    To improve the depiction and tracking of vocal tract articulators in spiral real‐time MRI (RT‐MRI) of speech production by estimating and correcting for dynamic changes in off‐resonance.

    Methods

    The proposed method computes a dynamic field map from the phase of single‐TE dynamic images after a coil phase compensation where complex coil sensitivity maps are estimated from the single‐TE dynamic scan itself. This method is tested using simulations and in vivo data. The depiction of air–tissue boundaries is evaluated quantitatively using a sharpness metric and visual inspection.

    Results

    Simulations demonstrate that the proposed method provides robust off‐resonance correction for spiral readout durations up to 5 ms at 1.5T. In ‐vivo experiments during human speech production demonstrate that image sharpness is improved in a majority of data sets at air–tissue boundaries including the upper lip, hard palate, soft palate, and tongue boundaries, whereas the lower lip shows little improvement in the edge sharpness after correction.

    Conclusion

    Dynamic off‐resonance correction is feasible from single‐TE spiral RT‐MRI data, and provides a practical performance improvement in articulator sharpness when applied to speech production imaging.

     
    more » « less
  5. Purpose

    Provide a direct, non‐invasive diagnostic measure of microscopic tissue texture in the size scale between tens of microns and the much larger scale measurable by clinical imaging. This paper presents a method and data demonstrating the ability to measure these microscopic pathologic tissue textures (histology) in the presence of subject motion in an MR scanner. This size range is vital to diagnosing a wide range of diseases.

    Theory/Methods

    MR micro‐Texture (MRµT) resolves these textures by a combination of measuring a targeted set of k‐values to characterize texture—as in diffraction analysis of materials, performing a selective internal excitation to isolate a volume of interest (VOI), applying a high k‐value phase encode to the excited spins in the VOI, and acquiring each individual k‐value data point in a single excitation—providing motion immunity and extended acquisition time for maximizing signal‐to‐noise ratio. Additional k‐value measurements from the same tissue can be made to characterize the tissue texture in the VOI—there is no need for these additional measurements to be spatially coherent as there is no image to be reconstructed. This method was applied to phantoms and tissue specimens including human prostate tissue.

    Results

    Data demonstrating resolution <50 µm, motion immunity, and clearly differentiating between normal and cancerous tissue textures are presented.

    Conclusion

    The data reveal textural differences not resolvable by standard MR imaging. As MRµT is a pulse sequence, it is directly translatable to MRI scanners currently in clinical practice to meet the need for further improvement in cancer imaging.

     
    more » « less