skip to main content


Title: Brain Trauma Disrupts Hepatic Lipid Metabolism: Blame It on Fructose?
Scope

The action of brain disorders on peripheral metabolism is poorly understood. The impact of traumatic brain injury (TBI) on peripheral organ function and how TBI effects can be influenced by the metabolic perturbation elicited by fructose ingestion are studied.

Methods and Results

It is found that TBI affects glucose metabolism and signaling proteins for insulin and growth hormone in the liver; these effects are exacerbated by fructose ingestion. Fructose, principally metabolized in the liver, potentiates the action of TBI on hepatic lipid droplet accumulation. Studies in isolated cultured hepatocytes identify GH and fructose as factors for the synthesis of lipids. The liver has a major role in the synthesis of lipids used for brain function and repair. TBI results in differentially expressed genes in the hypothalamus, primarily associated with lipid metabolism, providing cues to understand central control of peripheral alterations. Fructose‐fed TBI animals have elevated levels of markers of inflammation, lipid peroxidation, and cell energy metabolism, suggesting the pro‐inflammatory impact of TBI and fructose in the liver.

Conclusion

Results reveal the impact of TBI on systemic metabolism and the aggravating action of fructose. The hypothalamic‐pituitary‐growth axis seems to play a major role in the regulation of the peripheral TBI pathology.

 
more » « less
PAR ID:
10460251
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Molecular Nutrition & Food Research
Volume:
63
Issue:
15
ISSN:
1613-4125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scope

    Traumatic brain injury (TBI) compromises neuronal function required for hippocampal synaptic plasticity and cognitive function. Despite the high consumption of blueberries, information about its effects on brain plasticity and function under conditions of brain trauma is limited. The efficacy of dietary blueberry (BB) supplementation to mitigate the effects of TBI on plasticity markers and associated behavioral function in a rodent model of concussive injury are assessed.

    Methods and results

    Rats were maintained on a diet supplemented with blueberry (BB, 5% w/w) for 2 weeks after TBI. It is found that BB supplementation mitigated a loss of spatial learning and memory performance after TBI, and reduced the effects of TBI on anxiety‐like behavior. BB supplementation prevents a reduction of molecules associated with the brain‐derived neurotrophic factor (BDNF) system action on learning and memory such as cyclic‐AMP response element binding factor (CREB), calcium/calmodulin‐dependent protein kinase II (CaMKII). In addition, BB supplementation reverses an increase of the lipid peroxidation byproduct 4‐hydroxy‐nonenal (4‐HNE) after TBI. Importantly, synaptic and neuronal signaling regulators change in proportion with the memory performance, suggesting an association between plasticity markers and behavior.

    Conclusion

    Data herein indicate that BB supplementation has a beneficial effect in mitigating the acute aspects of the TBI pathology.

     
    more » « less
  2. Abstract Purpose

    This study aimed to investigate the role of neck muscle activity and neck damping characteristics in traumatic brain injury (TBI) mechanisms.

    Methods

    We used a previously validated head-neck finite element (FE) model that incorporates various components such as scalp, skull, cerebrospinal fluid, brain, muscles, ligaments, cervical vertebrae, and intervertebral discs. Impact scenarios included a Golf ball impact, NBDL linear acceleration, and Zhang’s linear and rotational accelerations. Three muscle activation strategies (no-activation, low-to-medium, and high activation levels) and two neck damping levels by perturbing intervertebral disc properties (high: hyper-viscoelastic and low: hyper-elastic) strategies were examined. We employed Head Injury Criterion (HIC), Brain Injury Criterion (BrIC), and maximum principal strain (MPS) as TBI measures.

    Results

    Increased neck muscle activation consistently reduced the values of all TBI measures in Golf ball impact (HIC: 4%-7%, BrIC: 11%-25%, and MPS (occipital): 27%-50%) and NBDL study (HIC: 64%-69%, BrIC: 3%-9%, and MPS (occipital): 6%-19%) simulations. In Zhang’s study, TBI metric values decreased with the increased muscle activation from no-activation to low-to-medium (HIC: 74%-83%, BrIC: 27%-27%, and MPS (occipital): 60%-90%) and then drastically increased with further increases to the high activation level (HIC: 288%-507%, BrIC: 1%-25%, and MPS (occipital): 23%-305%). Neck damping changes from low to high decreased all values of TBI metrics, particularly in Zhang’s study (up to 40% reductions).

    Conclusion

    Our results underscore the pivotal role of neck muscle activation and neck damping in TBI mitigation and holds promise to advance effective TBI prevention and protection strategies for diverse applications.

     
    more » « less
  3. ABSTRACT Background High intakes of fructose are associated with metabolic diseases, including hypertriglyceridemia and intestinal tumor growth. Although small intestinal epithelia consist of many different cell types, express lipogenic genes, and convert dietary fructose to fatty acids, there is no information on the identity of the cell type(s) mediating this conversion and on the effects of fructose on lipogenic gene expression. Objectives We hypothesized that fructose regulates the intestinal expression of genes involved in lipid and apolipoprotein synthesis, that regulation depends on the fructose transporter solute carrier family 2 member a5 [Slc2a5 (glucose transporter 5)] and on ketohexokinase (Khk), and that regulation occurs only in enterocytes. Methods We compared lipogenic gene expression among different organs from wild-type adult male C57BL mice consuming a standard vivarium nonpurified diet. We then gavaged twice daily for 2.5 d fructose or glucose solutions (15%, 0.3 mL per mouse) into wild-type, Slc2a5-knockout (KO), and Khk-KO mice with free access to the nonpurified diet and determined expression of representative lipogenic genes. Finally, from mice fed the nonpurified diet, we made organoids highly enriched in enterocyte, goblet, Paneth, or stem cells and then incubated them overnight in 10 mM fructose or glucose. Results Most lipogenic genes were significantly expressed in the intestine relative to the kidney, liver, lung, and skeletal muscle. In vivo expression of Srebf1, Acaca, Fasn, Scd1, Dgat1, Gk, Apoa4, and Apob mRNA and of Scd1 protein increased (P < 0.05) by 3- to 20-fold in wild-type, but not in Slc2a5-KO and Khk-KO, mice gavaged with fructose. In vitro, Slc2a5- and Khk-dependent, fructose-induced increases, which ranged from 1.5- to 4-fold (P < 0.05), in mRNA concentrations of all these genes were observed only in organoids enriched in enterocytes. Conclusions Fructose specifically stimulates expression of mouse small intestinal genes for lipid and apolipoprotein synthesis. Secretory and stem cells seem incapable of transport- and metabolism-dependent lipogenesis, occurring only in absorptive enterocytes. 
    more » « less
  4. Scope

    A better understanding of factors contributing to interindividual variability in biomarkers of vitamin K can enhance the understanding of the equivocal role of vitamin K in cardiovascular disease. Based on the known biology of phylloquinone, the major form of vitamin K, it is hypothesized that plasma lipids contribute to the variable response of biomarkers of vitamin K metabolism to phylloquinone supplementation.

    Methods and results

    The association of plasma lipids and 27 lipid‐related genetic variants with the response of biomarkers of vitamin K metabolism is examined in a secondary analysis of data from a 3‐year phylloquinone supplementation trial in men (n = 66) and women (n = 85). Year 3 plasma triglycerides (TG), but not total cholesterol, LDL‐cholesterol, or HDL‐cholesterol, are associated with the plasma phylloquinone response (men: β = 1.01,p < 0.001,R2 = 0.34; women: β = 0.61,p = 0.008,R2 = 0.11; sex interactionp = 0.077). Four variants and the TG‐weighted genetic risk score are associated with the plasma phylloquinone response in men only. Plasma lipids are not associated with changes in biomarkers of vitamin K function (undercarboxylated osteocalcin and matrix gla protein) in either sex.

    Conclusion

    Plasma TG are an important determinant of the interindividual response of plasma phylloquinone to phylloquinone supplementation, but changes in biomarkers of vitamin K carboxylation are not influenced by lipids.

     
    more » « less
  5. Introduction

    Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear.

    Methods

    Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome.

    Results and discussion

    Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.

     
    more » « less