skip to main content

Title: Time‐of‐flight secondary ion mass spectrometry three‐dimensional imaging of surface modifications in poly(caprolactone) scaffold pores

Scaffolds composed of synthetic polymers such as poly(caprolactone) (PCL) are widely used for the support and repair of tissues in biomedicine. Pores are common features in scaffolds as they facilitate cell penetration. Various surface modifications can be performed to promote key biological responses to these scaffolds. However, verifying the chemistry of these materials post surface modification is problematic due to the combination of three‐dimensional (3D) topography and surface sensitivity. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) is commonly used to correlate surface chemistry with cell response. In this study, 3D imaging mass spectrometry analysis of surface modified synthetic polymer scaffolds is demonstrated using PCL porous scaffold, a pore filling polymer sample preparation, and 3D imaging ToF‐SIMS. We apply a simple sample preparation procedure, filling the scaffold pores with a poly(vinyl alcohol)/glycerol mixture to remove topographic influence on image quality. This filling method allows the scaffold (PCL) and filler secondary ions to be reconstructed into a 3D chemical image of the pore. Furthermore, we show that surface modifications in the pores of synthetic polymer scaffolds can be mapped in 3D. Imaging of “dry” and “wet” surface modifications is demonstrated as well as a comparison of surface modifications with relatively strong ToF‐SIMS peaks (fluorocarbon films [FC]) and to more biologically relevant surface modification of a protein (bovine serum albumin [BSA]). We demonstrate that surface modifications can be imaged in 3D showing that characteristic secondary ions associated with FC and BSA are associated with C3F8plasma treatment and BSA, respectively within the pore.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Medium: X Size: p. 2195-2204
p. 2195-2204
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    New, linear, segmented poly(peptide‐urethane‐urea) (PPUU) block copolymers are synthesized and their surface compositions are characterized with angle dependent X‐ray photoelectron spectroscopy (ADXPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). These new PPUU block copolymers contain three types of segments. The soft segment (SS) is poly(caprolactone diol) (PCL). The hard segment is lysine diisocyanate with a hydrazine chain extender. The oligopeptide segment (OPS) contains three types of amino acids (proline, hydroxyproline, and glycine). Incorporation of the OPS into the polyurethane backbone is done to provide a synthetic polymer material with controllable biodegradation properties. As biodegradation processes normally are initiated at the interface between the biomaterial and the living tissue, it is important to characterize the surface composition of biomaterials. ADXPS and ToF‐SIMS results show that the surfaces of all four polymers are enriched with the PCL SS, the most hydrophobic component of the three polymer segments.

    more » « less
  2. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used for chemical analysis of surfaces. ToF-SIMS is a powerful tool for polymer science because it detects a broad mass range with good mass resolution, thereby distinguishing between polymers that have similar elemental compositions and/or the same types of functional groups. Chemical labeling techniques that enhance contrast, such as deuterating or staining one constituent, are generally unnecessary. ToF-SIMS can generate both two-dimensional images and three-dimensional depth profiles, where each pixel in an image is associated with a complete mass spectrum. This Review begins by introducing the principles of ToF-SIMS measurements, including instrumentation, modes of operation, strategies for data analysis, and strengths/limitations when characterizing polymer surfaces. The sections that follow describe applications in polymer science that benefit from characterization by ToF-SIMS, including thin films and coatings, polymer blends, composites, and electronic materials. The examples selected for discussion showcase the three standard modes of operation (spectral analysis, imaging, and depth profiling) and highlight practical considerations that relate to experimental design and data processing. We conclude with brief comments about broader opportunities for ToF-SIMS in polymer science. 
    more » « less
  3. Abstract

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a versatile surface-sensitive technique for characterizing both hard and soft matter. Its chemical and molecular specificity, high spatial resolution, and superior sensitivity make it an ideal method for depth profiling polymeric systems, including those comprised of both inorganic and organic constituents (i.e., polymer nanocomposites, PNCs). To best utilize ToF-SIMS for characterizing PNCs, experimental conditions must be optimized to minimize challenges such as the matrix effect and charge accumulation. Toward that end, we have successfully used ToF-SIMS with a Xe+ focused ion beam to depth profile silica nanoparticles grafted with poly(methyl methacrylate) (PMMA-NP) in a poly(styrene-ran-acrylonitrile) matrix film by selecting conditions that address charge compensation and the primary incident beam angles. By tracking the sputtered Si+ species and fitting the resultant concentration profile, the diffusion coefficient of PMMA-NP was determined to be D = 2.4 × 10−14 cm2/s. This value of D lies between that measured using Rutherford backscattering spectrometry (6.4 × 10−14 cm2/s) and the value predicted by the Stokes–Einstein model (2.5 × 10−15 cm2/s). With carefully tuned experimental parameters, ToF-SIMS holds great potential for quantitatively characterizing the nanoparticles at the surfaces and interfaces within PNC materials as well as soft matter in general.

    more » « less
  4. Three-dimensional (3D) printing was utilized for the fabrication of a composite scaffold of poly(ε-caprolactone) (PCL) and calcium magnesium phosphate (CMP) bioceramics for bone tissue engineering application. Four groups of scaffolds, that is, PMC-0, PMC-5, PMC-10, and PMC-15, were fabricated using a custom 3D printer. Rheology analysis, surface morphology, and wettability of the scaffolds were characterized. The PMC-0 scaffolds displayed a smoother surface texture and an increase in the ceramic content of the composite scaffolds exhibited a rougher structure. The hydrophilicity of the composite scaffold was significantly enhanced compared to the control PMC-0. The effect of ceramic content on the bioactivity of fibroblast NIH/3T3 cells in the composite scaffold was investigated. Cell viability and toxicity studies were evaluated by comparing results from lactate dehydrogenase (LDH) and Alamar Blue (AB) colorimetric assays, respectively. The live-dead cell assay illustrated the biocompatibility of the tested samples with more than 100% of live cells on day 3 compared to the control one. The LDH release indicated that the composite scaffolds improved cell attachment and proliferation. In this research, the fabrication of a customized composite 3D scaffold not only mimics the rough textured architecture, porosity, and chemical composition of natural bone tissue matrices but also serves as a source for soluble ions of calcium and magnesium that are favorable for bone cells to grow. These 3D-printed scaffolds thus provide a desirable microenvironment to facilitate biomineralization and could be a new effective approach for preparing constructs suitable for bone tissue engineering. 
    more » « less
  5. Abstract

    The biochemical and physical properties of a scaffold can be tailored to elicit specific cellular responses. However, it is challenging to decouple their individual effects on cell‐material interactions. Here, we solvent‐cast 3D printed different ratios of high and low molecular weight (MW) poly(caprolactone) (PCL) to fabricate scaffolds with significantly different stiffnesses without affecting other properties. Ink viscosity was used to match processing conditions between inks and generate scaffolds with the same surface chemistry, crystallinity, filament diameter, and architecture. Increasing the ratio of low MW PCL resulted in a significant decrease in modulus. Scaffold modulus did not affect human mesenchymal stromal cell (hMSC) differentiation under osteogenic conditions. However, hMSC response was significantly affected by scaffold stiffness in chondrogenic media. Low stiffness promoted more stable chondrogenesis whereas high stiffness drove hMSC progression toward hypertrophy. These data illustrate how this versatile platform can be used to independently modify biochemical and physical cues in a single scaffold to synergistically enhance desired cellular response.

    more » « less