skip to main content


Title: Patterns in a species‐rich tropical understory plant community
Abstract

Understory plants are an important component of the high plant species diversity characteristic of neotropical rain forests. Herbs, shrubs, understory trees, and saplings of canopy trees occupy a broadly uniform environment of abundant rainfall, low light levels, and high humidity. We asked whether this community at the La Selva Biological Station in the Caribbean lowlands of Costa Rica was structured by environmental filters such as soil origin, topographic position, and understory light availability. We used nested quadrats to assess effects of soil origin (recent alluvium, weathered alluvium, residual volcanic soil) and topographic position (ridges, mid‐slopes and flats) on species composition, density, and diversity and measured six edaphic and understory light parameters. Non‐metric multidimensional scaling ordinations were based on frequency of occurrence in 20 quadrats for 272 species in the shrub size class and 136 species in the small‐tree size class for 17 sites. Three axes were correlated with composite environmental variables produced by principal component analysis representing slope, extractable phosphorus, and light. NMS site positions also reflected soil origin, topographic position, and geographic location. The analyses illustrated a complex community structured by species responses to environmental filters at multiple, interdigitated spatial scales. We suggest that light availability affected by canopy dynamics and dispersal limitation provides additional sources of variation in species distributions, which interact with edaphic patterns in complex ways.

Abstract in Spanish is available with online material.

 
more » « less
NSF-PAR ID:
10460325
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Biotropica
Volume:
51
Issue:
5
ISSN:
0006-3606
Page Range / eLocation ID:
p. 664-673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cajander larch (Larix cajanderi Mayr.) forests of the Siberian Arctic are experiencing increased wildfire activity in conjunction with climate warming. These shifts could affect postfire variation in the density and arrangement of trees and understory plant communities. To better understand how understory plant composition, abundance, and diversity vary with tree density, we surveyed understory plant communities and stand characteristics (e.g., canopy cover, active layer depth, and soil organic layer depth) within 25 stands representing a density gradient of similarly-aged larch trees that established following a 1940 fire near Cherskiy, Russia. Understory plant diversity and mean total plant abundance decreased with increased canopy cover. Canopy cover was also the most important variable affecting individual species’ abundances. In general, tall shrubs (e.g., Betula nana subsp. exilis) were more abundant in low-density stands with high light availability, and mosses (e.g., Sanionia spp.) were more abundant in high-density stands with low light availability. These results provide evidence that postfire variation in tree recruitment affects understory plant community composition and diversity as stands mature. Therefore, projected increases in wildfire activity in the Siberian Arctic could have cascading impacts on forest structure and composition in both overstory and understory plant communities. 
    more » « less
  2. Abstract

    Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter‐ and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330‐m elevation gradient in Peru, and in sun leaves across a forest–savanna vegetation gradient in Brazil. We also comparedLMAvariance ratios (T‐statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community‐weightedLMAincreased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation inLMAwas species turnover. Variation inLMAat the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation inLMAindicate that biodiversity in species rich tropical assemblages may be structured by differential niche‐based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.

     
    more » « less
  3. null (Ed.)
    The data set covers a 101-yr period (1915–2016) of quadrat-based plant sampling at the Jornada Experimental Range in southern New Mexico. At each sampling event, a pantograph was used to record the location and perimeter of living plants within permanent quadrats. Basal area was recorded for perennial grass species, canopy cover area was recorded for shrub species, and all other perennial species were recorded as point data. The data set includes 122 1 × 1 m permanent quadrats, although not all quadrats were sampled in each year of the study and there is a gap in monitoring from 1980 to 1995. These data provide a unique opportunity to investigate changes in the plant community over 100 yr of variation in precipitation and other environmental conditions. We provide the following data and data formats: (1) the digitized maps in shapefile format; (2) a data table containing coordinates (x, y) of perennial species within quadrats, including cover area for grasses and shrubs; (3) a data table of counts of annual plant individuals per quadrat; (4) a species list indicating growth form and habit of recorded species; (5) a table of dates when each quadrat was sampled; (6) a table of the pasture each quadrat was located within (note that pasture boundaries have changed over time); (7) a table of depth to petrocalcic layer measurements taken at quadrat locations; (8) a table of particle size analysis of soil samples taken at quadrat locations; (9) a table of topographic characteristics of quadrat locations (e.g., concave or convex topography). Pantograph sampling is currently conducted at 5-yr intervals by USDA-ARS staff, and new data will be added periodically to the EDI Data Portal Repository (see section V.E.2). This information is released under the Creative Commons license—Attribution—CC BY and the consumer of these data is required to cite it appropriately in any publication that results from its use. 
    more » « less
  4. Understanding relationships among tree species, or between tree diversity, distribution, and underlying environmental gradients, is a central concern for forest ecologists, managers, and management agencies. The spatial processes underlying observed spatial patterns of trees or edaphic variables often are complex and violate two fundamental assumptions—isotropy and stationarity—of spatial statistics. Codispersion analysis is a new statistical method developed to assess spatial covariation between two spatial processes that may not be isotropic or stationary. Its application to data from large forest plots has provided new insights into mechanisms underlying observed patterns of species distributions and the relationship between individual species and underlying edaphic and topographic gradients. However, these data are not collected without error, and the performance of the codispersion coefficient when there is noise or measurement error (“contamination”) in the data heretofore has been addressed only theoretically. Here, we use Monte Carlo simulations and real datasets to investigate the sensitivity of codispersion to four types of contamination commonly seen in many forest datasets. Three of these involved comparing codispersion of a spatial dataset with a contaminated version of itself. The fourth examined differences in codispersion between tree species and soil variables, where the estimates of soil characteristics were based on complete or thinned datasets. In all cases, we found that estimates of codispersion were robust when contamination was relatively low (<15%), but were sensitive to larger percentages of contamination. We also present a useful method for imputing missing spatial data and discuss several aspects of the codispersion coefficient when applied to noisy data to gain more insight about the performance of codispersion in practice. 
    more » « less
  5. Abstract

    Whether niche processes, like environmental filtering, or neutral processes, like dispersal limitation, are the primary forces driving community assembly is a central question in ecology. Here, we use a natural experimental system of isolated tree “islands” to test whether environment or geography primarily structures fungal community composition at fine spatial scales. This system consists of isolated pairs of two distantly related, congeneric pine trees established at varying distances from each other and the forest edge, allowing us to disentangle the effects of geographic distance vs. host and edaphic environment on associated fungal communities. We identified fungal community composition with Illumina sequencing ofITSamplicons, measured all relevant environmental parameters for each tree—including tree age, size and soil chemistry—and calculated geographic distances from each tree to all others and to the nearest forest edge. We applied generalized dissimilarity modelling to test whether total and ectomycorrhizal fungal (EMF) communities were primarily structured by geographic or environmental filtering. Our results provide strong evidence that as in many other organisms, niche and neutral processes both contribute significantly to turnover in community composition in fungi, but environmental filtering plays the dominant role in structuring both free‐living and symbiotic fungal communities at fine spatial scales. In our study system, we foundpHand organic matter primarily drive environmental filtering in total soil fungal communities and thatpHand cation exchange capacity—and, surprisingly, not host species—were the largest factors affectingEMFcommunity composition. These findings support an emerging paradigm thatpHmay play a central role in the assembly of all soil‐mediated systems.

     
    more » « less