skip to main content


Title: The Cancer Drug Fraction of Metabolism Database

This study aims to create a database for quantifying the fraction of metabolism of cytochrome P450 isozymes for cancer drugs approved by theUSFood and Drug Administration. A reproducible data collection protocol was developed to extract essential information, including both substrate‐depletion and metabolite‐formation data from publicly availablein vitroselective cytochrome P450 enzyme inhibition studies. We estimated the fraction of metabolism from the curated data. To demonstrate the utility of this database, we conducted anin vitrodrug interaction prediction for the 42 cancer drugs. In the drug–drug interaction prediction, we identified 31 drug pairs with at least one cancer drug in each pair that had predicted area under concentration ratios > 2. We further found clinical drug interaction pieces of evidence in the literature to support 20 of these 31drug–drug interactionpairs.

 
more » « less
NSF-PAR ID:
10460353
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
CPT: Pharmacometrics & Systems Pharmacology
Volume:
8
Issue:
7
ISSN:
2163-8306
Page Range / eLocation ID:
p. 511-519
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Across insect genomes, the size of the cytochrome P450 monooxygenase (CYP) gene superfamily varies widely.CYPome size variation has been attributed to reciprocal adaptive radiations in insect detoxification genes in response to plant biosynthetic gene radiations driven by co‐evolution between herbivores and their chemically defended hostplants. Alternatively, variation inCYPome size may be due to random “birth‐and‐death” processes, whereby exponential increase via gene duplications is limited by random decay via gene death or transition via divergence. We examinedCYPome diversification in the genomes of seven Lepidoptera species varying in host breadth from monophagous (Bombyx mori) to highly polyphagous (Amyelois transitella).CYPome size largely reflects the size of Clan 3, the clan associated with xenobiotic detoxification, and to some extent phylogenetic age. Consistently across genomes, familiesCYP6,CYP9 andCYP321 are most diverse andCYP6AB,CYP6AE,CYP6B,CYP9A andCYP9G are most diverse among subfamilies. Higher gene number in subfamilies is due to duplications occurring primarily after speciation and specialization (“P450 blooms”), and the genes are arranged in clusters, indicative of active duplicating loci. In the parsnip webworm,Depressaria pastinacella, gene expression levels in large subfamilies are high relative to smaller subfamilies. Functional and phylogenetic data suggest a correlation between highly dynamic loci (reflective of extensive gene duplication, functionalization and in some cases loss) and the ability of enzymes encoded by these genes to metabolize hostplant defences, consistent with an adaptive, nonrandom process driven by ecological interactions.

     
    more » « less
  2. Summary

    In the natural pesticides known as pyrethrins, which are esters produced in flowers ofTanacetum cinerariifolium(Asteraceae), the monoterpenoid acyl moiety is pyrethric acid or chrysanthemic acid.

    We show here that pyrethric acid is produced from chrysanthemol in six steps catalyzed by four enzymes, the first five steps occurring in the trichomes covering the ovaries and the last one occurring inside the ovary tissues.

    Three steps involve the successive oxidation of carbon 10 (C10) to a carboxylic group by TcCHH, a cytochrome P450 oxidoreductase. Two other steps involve the successive oxidation of the hydroxylated carbon 1 to give a carboxylic group by TcADH2 and TcALDH1, the same enzymes that catalyze these reactions in the formation of chrysanthemic acid. The ultimate result of the actions of these three enzymes is the formation of 10‐carboxychrysanthemic acid in the trichomes. Finally, the carboxyl group at C10 is methylated by TcCCMT, a member of theSABATHmethyltransferase family, to give pyrethric acid. This reaction occurs mostly in the ovaries.

    Expression inN. benthamianaplants of all four genes encoding aforementioned enzymes, together with TcCDS, a gene that encodes an enzyme that catalyzes the formation of chrysanthemol, led to the production of pyrethric acid.

     
    more » « less
  3. Abstract

    Next‐generation sequencing technologies now allow researchers of non‐model systems to perform genome‐based studies without the requirement of a (often unavailable) closely related genomic reference. We evaluated the role of restriction endonuclease (RE) selection in double‐digest restriction‐site‐associatedDNAsequencing (ddRADseq) by generating reduced representation genome‐wide data using four differentREcombinations. Our expectation was thatREselections targeting longer, more complex restriction sites would recover fewer loci thanREwith shorter, less complex sites. We sequenced a diverse sample of non‐model arachnids, including five congeneric pairs of harvestmen (Opiliones) and four pairs of spiders (Araneae). Sample pairs consisted of either conspecifics or closely related congeneric taxa, and in total 26 sample pair analyses were tested. Sequence demultiplexing, read clustering and variant calling were performed in thepyRADprogram. The 6‐base pair cutterEcoRIcombined with methylated site‐specific 4‐base pair cutterMspIproduced, on average, the greatest numbers of intra‐individual loci and shared loci per sample pair. As expected, the number of shared loci recovered for a sample pair covaried with the degree of genetic divergence, estimated with cytochrome oxidase I sequences, although this relationship was non‐linear. Our comparative results will prove useful in guiding protocol selection for ddRADseq experiments on many arachnid taxa where reference genomes, even from closely related species, are unavailable.

     
    more » « less
  4. Objective

    To obtain the comprehensive transcriptome profile of human citrulline‐specific B cells from patients with rheumatoid arthritis (RA).

    Methods

    Citrulline‐ and hemagglutinin‐specific B cells were sorted by flow cytometry using peptide–streptavidin conjugates from the peripheral blood ofRApatients and healthy individuals. The transcriptome profile of the sorted cells was obtained byRNA‐sequencing, and expression of key protein molecules was evaluated by aptamer‐basedSOMAscan assay and flow cytometry. The ability of these proteins to effect differentiation of osteoclasts and proliferation and migration of synoviocytes was examined by in vitro functional assays.

    Results

    Citrulline‐specific B cells, in comparison to citrulline‐negative B cells, from patients withRAdifferentially expressed the interleukin‐15 receptor α (IL‐15Rα) gene as well as genes related to protein citrullination and cyclicAMPsignaling. In analyses of an independent cohort of cyclic citrullinated peptide–seropositiveRApatients, the expression ofIL‐15Rα protein was enriched in citrulline‐specific B cells from the patients’ peripheral blood, and surprisingly, all B cells fromRApatients were capable of producing the epidermal growth factor ligand amphiregulin (AREG). Production ofAREGdirectly led to increased migration and proliferation of fibroblast‐like synoviocytes, and, in combination with anti–citrullinated protein antibodies, led to the increased differentiation of osteoclasts.

    Conclusion

    To the best of our knowledge, this is the first study to document the whole transcriptome profile of autoreactive B cells in any autoimmune disease. These data identify several genes and pathways that may be targeted by repurposing severalUSFood and Drug Administration–approved drugs, and could serve as the foundation for the comparative assessment of B cell profiles in other autoimmune diseases.

     
    more » « less
  5. Summary

    The landmark report (Herbstet al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed thatDESwas the carcinogen and exposure toDEScaused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero.DESwas also being used in agriculture and we discovered, at the first meeting onEstrogens in the Environmentin 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated howDESand other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At theWingspread Conference on the Human‐Wildlife Connectionin 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals alter cell differentiation. Since 2010, research has shown that trauma and other behavioral inputs can function as ‘environmental signals,’ can be encoded in gene regulation networks in a variety of cells and organs, and can be passed on to subsequent generations. So now we come full circle: environmental chemicals mimic hormones or other metabolic signaling molecules and now behavioral experience can be transduced into chemical signals that also modify gene expression.

     
    more » « less