skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Optimized fishing through periodically harvested closures

Periodically harvested closures are a widespread, centuries‐old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo‐Pacific.

We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks.

We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure.

Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade‐off between periodic closures that maximized harvest efficiency and no‐take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to ≤18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures.

Synthesis and applications. We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no‐take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well‐managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Journal of Applied Ecology
Page Range / eLocation ID:
p. 1927-1936
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bottom-towed fishing gears produce significant amounts of seafood globally but can result in seafloor habitat damage. Spatial closures provide an important option for mitigating benthic impacts, but their performance as a fisheries management policy depends on numerous factors, including how fish respond to habitat quality changes. Spatial fisheries management has largely focused on marine protected areas with static locations, overlooking dynamic spatial closures that change through time. To investigate the performance of dynamic closures, we develop a spatial fishery model with fishing-induced habitat damage, where habitat quality can affect both fish productivity and movement. We find that dynamic spatial closures often achieve greater harvest and habitat protection than fixed marine protected areas or conventional nonspatial maximum sustainable yield management, especially under strong habitat–stock interactions. Determining optimal dynamic spatial closures may require considerable information, but we find that simple policies of fixed-schedule rotating closures also perform well. Dynamic spatial closures have received less attention as fisheries management tools, and our results demonstrate their potential value for addressing both harvest and habitat impacts from fishing. 
    more » « less
  2. Abstract

    Most fishing is inherently size‐selective, in that fishers preferentially select a subset of the population for harvest based on economic incentives associated with different‐sized fish. Size‐selective fishing influences the targeted population and fishery performance in multiple ways, including changing the reproductive capacity of the target population and altering fishery yield. Understanding how social–ecological variability, including size selectivity, affects target species populations is critical for fisheries management to optimize the benefits of fisheries and the ecological impacts on target populations. In this study, we used yield per recruit, spawning stock biomass per recruit, and length‐based spawning potential ratio models to explore how a range of size selectivity scenarios affect fishery and population productivity for Mexican chocolate clams,Megapitaria squalida, in Loreto, Baja California Sur, Mexico. We found that alternate slot limits result in trade‐offs between fishery yield and reproductive productivity of the target population. A more restrictive slot limit reduced the proportion of the population available to harvest, resulting in higher reproductive capacity of the population, compared to a less restrictive slot limit, conditional on the rate of fishing mortality. In the long run, a more restrictive slot limit will likely lead to a higher number of recruits, larger stock size, and higher long‐term fishery yield relative to a less restrictive scenario. Our findings highlight that how people fish matters, perhaps as much as the quantity of fish harvested; size‐selective fishing that aligns with the life history of target populations and stakeholders’ goals is critical to sustaining fisheries and the valuable food and livelihoods they provide.

    more » « less
  3. Abstract

    Tropical floodplains secure the protein supply of millions of people, but only sound management can ensure the long‐term continuity of such ecosystem services. Overfishing is a widespread threat to multitrophic systems, but how it affects ecosystem functioning is poorly understood, particularly in tropical freshwater food webs. Models based on temperate lakes frequently assume that primary producers are mostly bottom‐up controlled by nutrient and light limitations, with negligible effects of top‐down forces. Yet this assumption remains untested in complex tropical freshwater systems experiencing marked spatiotemporal variation.

    We use consolidated community‐based fisheries management practices and spatial zoning to test the relative importance of bottom‐up versus top‐down drivers of phytoplankton biomass, controlling for the influence of local to landscape heterogeneity. Our study focuses on 58 large Amazonian floodplain lakes under different management regimes that resulted in a gradient of apex‐predator abundance. These lakes, distributed along ~600 km of a major tributary of the Amazon River, varied widely in size, structure, landscape context, and hydrological seasonality.

    Using generalised linear models, we show that community‐based fisheries management, which controls the density of apex predators, is the strongest predictor of phytoplankton biomass during the dry season, when lakes become discrete landscape units. Water transparency also emerges as an important bottom‐up factor, but phosphorus, nitrogen and several lake and landscape metrics had minor or no effects on phytoplankton biomass. During the wet‐season food pulse, when lakes become connected to adjacent water bodies and homogenise the landscape, only lake depth explained phytoplankton biomass.

    Synthesis and applications. Tropical freshwaters fisheries typically assume that fish biomass is controlled by bottom‐up mechanisms, so that overexploitation of large predators would not affect overall ecosystem productivity. Our results, however, show that top‐down forces are important drivers of primary productivity in tropical lakes, above and beyond the effects of bottom‐up factors. This helps us to understand the enormous success of community‐based ‘fishing agreements’ in the Amazon. Multiple stakeholders should embrace socio‐ecological management practices that shape both bottom‐up and top‐down forces to ensure biodiversity protection, sustainable fisheries yields and food security for local communities and regional economies.

    more » « less
  4. Abstract

    The role of spatial management, including marine protected areas, in achieving fisheries outcomes alongside conservation goals is debated. In fisheries that fail to meet fishing mortality targets, closed areas are sometimes implemented to reduce fishing mortality. However, fisheries with stronger management, including rights‐based approaches that can address overcapacity and overfishing problems, often employ spatial management as well. Here, we compare the objectives, design, and performance of spatial management in nine temperate demersal fisheries in North America, Oceania, Europe, and Africa that employ rights‐based systems. Common objectives of spatial management included protecting habitat, juveniles, and spawners and reducing discards. Recovering age structure and creating scientific reference sites were less common objectives, despite being widely cited benefits of spatial management. Some fisheries adopted single closures to achieve single objectives, whereas others adopted diverse networks to achieve multiple objectives. Importantly, many spatial protections are implemented primarily through industry initiatives. Environmental change compromised the efficacy of spatial management in some cases, suggesting the need to design spatial management systems that are robust to changing ocean conditions. Fisheries with diverse and extensive spatial management systems have generally healthier fish stocks. Whether this implies that spatial management contributed substantially to fishery performance is unclear due to an absence of large‐scale, long‐term studies aimed at discerning different drivers of success. Although these targeted monitoring studies of closed areas are limited, such studies are necessary to help resolve the ongoing debate and to enable more purposeful design of spatial management for fisheries and conservation.

    more » « less
  5. Abstract

    The ecosystem services provided by freshwater biodiversity are threatened by development and environmental and climate change in the Anthropocene.

    Here, case studies are described to show that a focus on the shared dependence on freshwater ecosystem functioning can mutually benefit fisheries and conservation agendas in the Anthropocene.

    Meeting the threat to fish biodiversity and fisher livelihood is pertinent in developing regions where there is often a convergence between high biodiversity, high dependency on aquatic biota and rapid economic development (see Kafue River, Logone floodplain, Tonle Sap, and Rio Negro case studies).

    These case studies serve as evidence that biodiversity conservation goals can be achieved by emphasizing a sustainable fisheries agenda with partnerships, shared knowledge and innovation in fisheries management (see Kafue River and Kenai River case studies).

    In all case studies, aquatic biodiversity conservation and fisheries agendas are better served if efforts focused on creating synergies between fishing activities with ecosystem functioning yield long‐term livelihood and food security narratives.

    A unified voice from conservation and fisheries communities has more socio‐economic and political capital to advocate for biodiversity and social interests in freshwater governance decisions.

    more » « less