skip to main content


Title: Welcome to the Atta world: A framework for understanding the effects of leaf‐cutter ants on ecosystem functions
Abstract

Leaf‐cutter ants are a prominent feature in Neotropical ecosystems, but a comprehensive assessment of their effects on ecosystem functions is lacking. We reviewed the literature and used our own recent findings to identify knowledge gaps and develop a framework to quantify the effects of leaf‐cutter ants on ecosystem processes.

Leaf‐cutter ants disturb the soil structure during nest excavation changing soil aeration and temperature. They mix relatively nutrient‐poor soil from deeper layers with the upper organic‐rich layers increasing the heterogeneity of carbon and nutrients within nest soils.

Leaf‐cutter ants account for about 25% of all herbivory in Neotropical forest ecosystems, moving 10%–15% of leaves in their foraging range to their nests. Fungal symbionts transform the fresh, nutrient‐rich vegetative material to produce hyphal nodules to feed the ants. Organic material from roots and arbuscular mycorrhizal fungi enhances carbon and nutrient turnover in nest soils and creates biogeochemical hot spots. Breakdown of organic matter, microbial and ant respiration, and nest waste material decomposition result in increased CO2, CH4,and N2O production, but the build‐up of gases and heat within the nest is mitigated by the tunnel network ventilation system. Nest ventilation dynamics are challenging to measure without bias, and improved sensor systems would likely solve this problem.

Canopy gaps above leaf‐cutter ant nests change the light, wind and temperature regimes, which affects ecosystem processes. Nests differ in density and size depending on colony age, forest type and disturbance level and change over time resulting in spatial and temporal changes of ecosystem processes. These characteristics remain a challenge to evaluate rapidly and non‐destructively.

Addressing the knowledge gaps identified in this synthesis will bring insights into physical and biological processes driving biogeochemical cycles at the nest and ecosystem scale and will improve our understanding of ecosystem biogeochemical heterogeneity and larger scale ecological phenomena.

Aplain language summaryis available for this article.

 
more » « less
NSF-PAR ID:
10460548
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
33
Issue:
8
ISSN:
0269-8463
Page Range / eLocation ID:
p. 1386-1399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Leaf‐cutter ants are dominant herbivores that disturb the soil and create biogeochemical hot spots. We studied how leaf‐cutter antAtta cephalotesimpacts soil CO2dynamics in a wet Neotropical forest. We measured soil CO2concentration monthly over 2.5 years at multiple depths in nonnest and nest soils (some of which were abandoned during the study) and assessed CO2production. We also measured nest and nonnest soil efflux, nest vent efflux, and vent concentration. Nest soils exhibited lower CO2accumulation than nonnest soils for the same precipitation amounts. During wet periods, soil CO2concentrations increased across all depths, but were significantly less in nest than in nonnest soils. Differences were nonsignificant during drier periods. Surface efflux was equal across nest and nonnest plots (5 μmol CO2m−2s−1), while vent efflux was substantially (103to 105times) greater, a finding attributed to free convection and sporadic forced convection. Vent CO2concentrations were less than in soil, suggesting CO2efflux from the soil matrix into the nest. Legacy effects in abandoned nests were still observable after more than two years. These findings indicate that leaf‐cutter ant nests provide alternative transport pathways to soil CO2that increase total emissions and decrease soil CO2concentrations, and have a lasting impact. Estimated total nest‐soil CO2emissions were 15 to 60% more than in nonnest soils, contributing 0.2 to 0.7% to ecosystem‐scale soil emissions. The observed CO2dynamics illuminate the significant carbon footprint of ecosystem engineerAtta cephalotesand have biogeochemical implications for rainforest ecosystems.

     
    more » « less
  2. Abstract

    Animals interact with and impact ecosystem biogeochemical cycling—processes known as zoogeochemistry. While the deposition of various animal materials (e.g. carcasses and faeces) has been shown to create nutrient hotspots and alter nutrient cycling and storage, the inputs from parturition (i.e. calving) have yet to be explored. We examine the effects of ungulate parturition, which often occurs synchronously during spring green‐up and therefore aligns with increased plant nitrogen demand in temperate biomes.

    Impacts of zoogeochemical inputs are likely context‐dependent, where differences in material quality, quantity and the system of deposition modulate their impacts. Plant mycorrhizal associations, especially, create different nutrient‐availability contexts, which can modify the effects of nutrient inputs. We, therefore, hypothesize that mycorrhizal associations modulate the consequences of parturition on soil nutrient dynamics and nitrogen pools.

    We established experimental plots that explore the potential of two kinds of zoogeochemical inputs deposited at ungulate parturition (placenta and natal fluid) in forest microsites dominated by either ericoid mycorrhizal (ErM) or ectomycorrhizal (EcM) plants. We assess how these inputs affect rates of nutrient cycling and nitrogen content in various ecosystem pools, using isotope tracers to track the fate of nitrogen inputs into plant and soil pools.

    Parturition treatments accelerate nutrient cycling processes and increase nitrogen contents in the plant leaf, stem and fine root pools. The ecosystem context strongly modulates these effects. Microsites dominated by ErM plants mute parturition treatment impacts on most nutrient cycling processes and plant pools. Both plant–fungal associations are, however, equally efficient at retaining nitrogen, although retention of nitrogen in the parturition treatment plots was more than two times lower than in control plots.

    Our results highlight the potential importance of previously unexamined nitrogen inputs from animal inputs, such as those from parturition, in contributing to fine‐scale heterogeneity in nutrient cycling and availability. Animal inputs should therefore be considered, along with their interactions with plant mycorrhizal associations, in terms of how zoogeochemical dynamics collectively affect nutrient heterogeneity in ecosystems.

     
    more » « less
  3. Abstract

    Understanding arctic ecosystem function is key to understanding future global carbon (C) and nutrient cycling processes. However, small mammal herbivores can have effects on ecosystems as structure builders and these effects have been underrepresented in the understanding of arctic systems.

    We examined the impact of small mammal structures (hay piles, runways, latrines) on soils and plants in three arctic tundra regions near Utqiaġvik, Toolik Lake, and Nome, Alaska. Our aims were to (1) examine how vole and lemming structures influence plant and soil nutrient pools and microbial processes, (2) determine if structure effects were similar across tundra system types, and (3) understand how changes in the abundance and cover of these structures during different phases of small mammal multi‐annual population cycles might influence biogeochemical cycling.

    In general, small mammal structures increased nitrogen (N) availability in soils, although effects varied by study region. Across study regions, hay piles were relatively uncommon (lowest % cover) but increased multiple soil N and P pools, C‐ and N‐acquiring enzyme activities, and leaf phosphorus (P) concentrations, with the specific nutrient variables and size of the effects varying by study region. Latrines had the second highest cover and influenced multiple C, N and P pools, but their effects were mainly observed within a single region. Lastly, runways had the highest % cover of all activity types but increased the fewest number of soil nutrient variables.

    We conclude that by influencing soil nutrient availability and biogeochemical cycling, small mammal structures can influence bottom‐up regulation of ecosystem function, particularly during the high phase of the small mammal population cycle. Future changes in these population cycles might alter the role of small mammals in the Arctic and have lasting effects on system processes.

    Read the freePlain Language Summaryfor this article on the Journal blog

     
    more » « less
  4. Abstract

    Nearly every terrestrial ecosystem hosts invasive ant species, and many of those ant species construct underground nests near roots and/or tend phloem‐feeding hemipterans on plants. We have a limited understanding of how these invasive ant behaviours change photosynthesis, carbohydrate availability and growth of woody plants.

    We measured photosynthesis, water relations, carbohydrate concentrations and growth for screenhouse‐rearedAcacia drepanolobiumsaplings on which we had manipulated invasivePheidole megacephalaants and nativeCeroplastessp. hemipterans to determine whether and how soil nesting and hemipteran tending by ants affect plant carbon dynamics. In a field study, we also compared leaf counts of vertebrate herbivore‐excluded and ‐exposed saplings in invaded and non‐invaded savannas to examine how ant invasion and vertebrate herbivory are associated with differences in sapling photosynthetic crown size.

    Though hemipteran infestations are often linked to declines in plant performance, our screenhouse experiment did not find an association between hemipteran presence and differences in plant physiology. However, we did find that soil nesting byP. megacephalaaround screenhouse plants was associated with >58% lower whole‐crown photosynthesis, >31% lower pre‐dawn leaf water potential, >29% lower sucrose concentrations in woody tissues and >29% smaller leaf areas. In the field, sapling crowns were 29% smaller in invaded savannas than in non‐invaded savannas, mimicking screenhouse results.

    Synthesis. We demonstrate that soil nesting near roots, a common behaviour byPheidole megacephalaand other invasive ants, can directly reduce carbon fixation and storage ofAcacia drepanolobiumsaplings. This mechanism is distinct from the disruption of a native ant mutualism byP. megacephala, which causes similar large declines in carbon fixation for matureA. drepanolobiumtrees.Acacia drepanolobiumalready has extremely low natural rates of recruitment from the sapling to mature stage, and we infer that these negative effects of invasion on saplings potentially curtail recruitment and reduce population growth in invaded areas. Our results suggest that direct interactions between invasive ants and plant roots in other ecosystems may strongly influence plant carbon fixation and storage.

     
    more » « less
  5. Abstract

    Understanding the drivers of ant diversity and co‐occurrence in agroecosystems is fundamental because ants participate in interactions that influence agroecosystem processes. Multiple local and regional factors influence ant community assembly.

    We examined local factors that influence the structure of a twig‐nesting ant community in a coffee system in Mexico using an experimental approach. We investigated whether twig characteristics (nest entrance size and diversity of nest entrance sizes) and nest strata (canopy shade tree or coffee shrub) affected occupation, species richness, and community composition of twig‐nesting ants and whether frequency of occupation of ant species varied with particular nest entrance sizes or strata.

    We conducted our study in a shaded coffee farm in Chiapas, Mexico, between March and June 2012. We studied ant nest colonization by placing artificial nests (bamboo twigs) on coffee shrubs and shade trees either in diverse or uniform treatments. We also examined whether differences in vegetation (no. of trees, canopy cover and coffee density) influenced nest colonization.

    We found 33 ant species occupying 73% of nests placed. Nest colonization did not differ with nest strata or size. Mean species richness of colonizing ants was significantly higher in the diverse nest size entrance treatment, but did not differ with nest strata. Community composition differed between strata and also between the diverse and uniform size treatments on coffee shrubs, but not on shade trees. Some individual ant species were more frequently found in certain nest strata and in nests with certain entrance sizes.

    Our results indicate that twig‐nesting ants are nest‐site limited, quickly occupy artificial nests of many sizes, and that trees or shrubs with twigs of a diversity of entrance sizes likely support higher ant species richness. Further, individual ant species more frequently occupy nests with different sized entrances promoting ant richness on individual coffee plants and trees.

     
    more » « less