Delaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel‐shoal” estuary. This numerical modeling study addresses the exchange flow in this channel‐shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow driven mainly by the along‐estuary density gradient, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross‐channel flow, which strongly influences the stratification, along‐estuary salt balance, and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion and is an advective momentum source contributing to the residual circulation. Whereas the shoals make a negligible direct contribution to the exchange flow, they have an indirect influence due to the salinity gradients between the channel and the shoal.
The Damariscotta River in midcoast Maine is a weakly stratified estuary characterized by several constrictions and channel bends that affect tidal asymmetry and material transport. Microstructure and current velocity measurements were collected at a cross‐channel transect in the northern reach of the estuary during spring and neap tidal conditions to study the effects of a channel bend immediately upstream of a constricted sill on intratidal dynamics. During the flood phase, a counterclockwise gyre is formed upstream of the headland, which enhances landward‐directed flow in the channel and is countered by seaward‐directed flow over the shallow shoal. Semidiurnal and quarter‐diurnal patterns of lateral advection and stress divergence emerge in the surface layer because of these secondary flows. Lateral advection effects dominate the dynamics in neap tide, and although they are stronger in spring tide, they are partially obscured by bottom friction forces that are proportional to the along‐channel velocity squared. A novel harmonic decomposition technique is introduced to determine the relative importance of advection and stress divergence on quarter‐diurnal velocity generation, and their implications to neap/spring variability in estuarine water quality are discussed.
more » « less- PAR ID:
- 10460660
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 124
- Issue:
- 2
- ISSN:
- 2169-9275
- Page Range / eLocation ID:
- p. 955-980
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The salinity distribution of an estuary depends on the balance between the river outflow, which is seaward, and a dispersive salt flux, which is landward. The dispersive salt flux at a fixed cross‐section can be divided into shear dispersion, which is caused by spatial correlations of the cross‐sectionally varying velocity and salinity, and the tidal oscillatory salt flux, which results from the tidal correlation between the cross‐section averaged, tidally varying components of velocity and salinity. The theoretical moving plane analysis of Dronkers and van de Kreeke (1986) indicates that the oscillatory salt flux is exactly equal to the difference between the “local” shear dispersion at a fixed location and the shear dispersion which occurred elsewhere within a tidal excursion; therefore, they refer to the oscillatory salt flux as “nonlocal” dispersion. We apply their moving plane analysis to a numerical model of a short, tidally dominated estuary and provide the first quantitative confirmation of the theoretical result that the spatiotemporal variability of shear dispersion accounts for the oscillatory salt flux. Shear dispersion is localized in space and time due to the tidal variation of currents and the position of the along‐channel salinity distribution with respect to topographic features. We find that dispersion near the mouth contributes strongly to the salt balance, especially under strong river and tidal forcing. Additionally, while vertical shear dispersion produces the majority of dispersive salt flux during neap tide and high flow, lateral mechanisms provide the dominant mode of dispersion during spring tide and low flow.
-
Abstract The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.
-
Abstract Despite its relatively small magnitude, cross-channel circulation in estuaries can influence the along-channel momentum balance, dispersion, and transport. We investigate spatial and temporal variation in cross-channel circulation at two contrasting sites in the Hudson River estuary. The two sites differ in the relative strength and direction of Coriolis and curvature forcing. We contrast the patterns and magnitudes of flow at the two sites during varying conditions in stratification driven by tidal amplitude and river discharge. We found well-defined flows during flood tides at both sites, characterized by mainly two-layer structures when the water column was more homogeneous and structures with three or more layers when the water column was more stratified. Ebb tides had generally weaker and less definite flows, except at one site where curvature and Coriolis reinforced each other during spring tide ebbs. Cross-channel currents had similar patterns, but were oppositely directed at the two sites, demonstrating the importance of curvature even in channels with relatively gradual curves. Coriolis and curvature dominated the measured terms in the cross-channel momentum balance. Their combination was generally consistent with driving the observed patterns and directions of flow, but local acceleration and cross-channel advection made some notable contributions. A large residual in the momentum balance indicates that some combination of vertical stress divergence, baroclinic pressure gradients, and along-channel and vertical advection must play an essential role, but data limitations prevented an accurate estimation of these terms. Cross-channel advection affected the along-channel momentum balance at times, with implications for the exchange flow’s strength.
Significance Statement Currents that flow across the channel in an estuary move slower than those flowing along the channel, but they can transport materials and change water properties in important ways, affecting human uses of estuaries such as shipping, aquaculture, and recreation. We wanted to better understand cross-channel currents in the Hudson River estuary. We found that larger tides produced the strongest cross-channel currents with a two-layer pattern, compared to weaker currents with three layers during smaller tides. Higher or lower river flow also affected current strength. Comparing two locations, we saw cross-channel currents moving in opposite directions because of differences in the curvature of the river channel. Our results show how channel curvature and Earth’s rotation combine to produce cross-channel currents.
-
Abstract. We investigate here the effects of geometric properties (channel depth andcross-sectional convergence length), storm surge characteristics, friction,and river flow on the spatial and temporal variability of compound floodingalong an idealized, meso-tidal coastal-plain estuary. An analytical model isdeveloped that includes exponentially convergent geometry, tidal forcing,constant river flow, and a representation of storm surge as a combination oftwo sinusoidal waves. Nonlinear bed friction is treated using Chebyshevpolynomials and trigonometric functions, and a multi-segment approach isused to increase accuracy. Model results show that river discharge increasesthe damping of surge amplitudes in an estuary, while increasing channeldepth has the opposite effect. Sensitivity studies indicate that the impactof river flow on peak water level decreases as channel depth increases,while the influence of tide and surge increases in the landward portion ofan estuary. Moreover, model results show less surge damping in deeperconfigurations and even amplification in some cases, while increasedconvergence length scale increases damping of surge waves with periods of 12–72 h. For every modeled scenario, there is a point where river dischargeeffects on water level outweigh tide/surge effects. As a channel isdeepened, this cross-over point moves progressively upstream. Thus, channeldeepening may alter flood risk spatially along an estuary and reduce thelength of a river estuary, within which fluvial flooding is dominant.more » « less