skip to main content


Title: Tuning Thermal Transport Through Atomically Thin Ti 3 C 2 T z MXene by Current Annealing in Vacuum
Abstract

Heat transport across vertical interfaces of heterogeneous 2D materials is usually governed by the weak Van der Waals interactions of the surface‐terminating atoms. Such interactions play a significant role in thermal transport across transition metal carbide and nitride (MXene) atomic layers due to their hydrophilic nature and variations in surface terminations. Here, the metallicity of atomically thin Ti3C2TzMXene, which is also verified by scanning tunneling spectroscopy for the first time, is exploited to develop a self‐heating/self‐sensing platform to carry out direct‐current annealing experiments in high (<10−8bar) vacuum, while simultaneously evaluating the interfacial heat transport across a Ti3C2Tz/SiO2interface. At room temperature, the thermal boundary conductance (TBC) of this interface is found, on average, to increase from 10 to 27 MW m−2K−1upon current annealing up to the breakdown limit. In situ heating X‐ray diffraction and X‐ray photo‐electron spectroscopy reveal that the TBC values are mainly affected by interlayer and interface spacing due to the removal of absorbents, while the effect of surface termination is negligible. This study provides key insights into understanding energy transport in MXene nanostructures and other 2D material systems.

 
more » « less
NSF-PAR ID:
10460663
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
29
Issue:
19
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Van der Waals interactions in 2D materials have enabled the realization of nanoelectronics with high‐density vertical integration. Yet, poor energy transport through such 2D–2D and 2D–3D interfaces can limit a device's performance due to overheating. One long‐standing question in the field is how different encapsulating layers (e.g., contact metals or gate oxides) contribute to the thermal transport at the interface of 2D materials with their 3D substrates. Here, a novel self‐heating/self‐sensing electrical thermometry platform is developed based on atomically thin, metallic Ti3C2MXene sheets, which enables experimental investigation of the thermal transport at a Ti3C2/SiO2interface, with and without an aluminum oxide (AlOx) encapsulating layer. It is found that at room temperature, the thermal boundary conductance (TBC) increases from 10.8 to 19.5 MW m−2K−1upon AlOxencapsulation. Boltzmann transport modeling reveals that the TBC can be understood as a series combination of an external resistance between the MXene and the substrate, due to the coupling of low‐frequency flexural acoustic (ZA) phonons to substrate modes, and an internal resistance between ZA and in‐plane phonon modes. It is revealed that internal resistance is a bottle‐neck to heat removal and that encapsulation speeds up the heat transfer into low‐frequency ZA modes and reduces their depopulation, thus increasing the effective TBC.

     
    more » « less
  2. Abstract

    MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2Tx) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF), which impede practical applications Ti3C2Txelectrodes in solution‐processed optoelectronics. Herein, Ti3C2TxMXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWFof 5.84 eV, and low sheet resistanceRSof 97.4 Ω sq−1. The compact Ti3C2Txstructure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF. Thus, changes in theWFandRSare negligible even after 22 days of exposure to ambient air. The Ti3C2TxMXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWFof MXene electrodes for solution‐processable optoelectronics.

     
    more » « less
  3. Abstract

    Control of surface functionalization of MXenes holds great potential, and in particular, may lead to tuning of magnetic and electronic order in the recently reported magnetic Cr2TiC2Tx. Here, vacuum annealing experiments of Cr2TiC2Txare reported with in situ electron energy loss spectroscopy and novel in situ Cr K‐edge extended energy loss fine structure analysis, which directly tracks the evolution of the MXene surface coordination environment. These in situ probes are accompanied by benchmarking synchrotron X‐ray absorption fine structure measurements and density functional theory calculations. With the etching method used here, the MXene has an initial termination chemistry of Cr2TiC2O1.3F0.8. Annealing to 600 °C results in the complete loss of F, but O termination is thermally stable up to (at least) 700 °C. These findings demonstrate thermal control of F termination in Cr2TiC2Txand offer a first step toward termination engineering this MXene for magnetic applications. Moreover, this work demonstrates high energy electron spectroscopy as a powerful approach for surface characterization in 2D materials.

     
    more » « less
  4. Abstract Porous MXene-polymer composites have gained attention due to their low density, large surface area, and high electrical conductivity, which can be used in applications such as electromagnetic interference shielding, sensing, energy storage, and catalysis. High internal phase emulsions (HIPEs) can be used to template the synthesis of porous polymer structures, and when solid particles are used as the interfacial agent, composites with pores lined with the particles can be realized. Here, we report a simple and scalable method to prepare conductive porous MXene/polyacrylamide structures via polymerization of the continuous phase in oil/water HIPEs. The HIPEs are stabilized by salt flocculated Ti 3 C 2 T x nanosheets, without the use of a co-surfactant. After polymerization, the polyHIPE structure consists of porous polymer struts and pores lined with Ti 3 C 2 T x nanosheets, as confirmed by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The pore size can be tuned by varying the Ti 3 C 2 T x concentration, and the interconnected Ti 3 C 2 T x network allows for electrical percolation at low Ti 3 C 2 T x loading; further, the electrical conductivity is stable for months indicating that in these composites, the nanosheets are stable to oxidation at ambient conditions. The polyHIPEs also exhibit rapid radio frequency heating at low power (10 °C s −1 at 1 W). This work demonstrates a simple approach to accessing electrically conductive porous MXene/polymer composites with tunable pore morphology and good oxidation stability of the nanosheets. 
    more » « less
  5. Abstract

    MXenes, two‐dimensional (2D) transition metal carbides and/or nitrides, possess surface termination groups such as hydroxyl, oxygen, and fluorine, which are available for surface functionalization. Their surface chemistry is critical in many applications. This article reports amine functionalization of Ti3C2TxMXene surface with [3‐(2‐aminoethylamino)‐propyl]trimethoxysilane (AEAPTMS). Characterization techniques such as X‐ray photoelectron spectroscopy verify the success of the surface functionalization and confirm that the silane coupling agent bonds to Ti3C2Txsurface both physically and chemically. The functionalization changes the MXene surface charge from −35 to +25 mV at neutral pH, which allows for in situ preparation of self‐assembled films. Further, surface charge measurements of the functionalized MXene at different pH values show that the functionalized MXene has an isoelectric point at a pH around 10.7, and the highest reported positive surface charge of +62 mV at a pH of 2.58. Furthermore, the existence of a mixture of different orientations of AEAPTMS and the simultaneous presence of protonated and free amine groups on the surface of Ti3C2Txare demonstrated. The availability of free amine groups on the surface potentially permits the fabrication of crosslinked electrically conductive MXene/epoxy composites, dye adsorbents, high‐performance membranes, and drug carriers. Surface modifications of this type are applicable to many other MXenes.

     
    more » « less