skip to main content

Title: Directions for research and training in plant omics: Big Questions and Big Data

A key remit of theNSF‐funded “Arabidopsis Research and Training for the 21stCentury” (ART‐21) Research Coordination Network has been to convene a series of workshops with community members to explore issues concerning research and training in plant biology, including the role that research usingArabidopsis thalianacan play in addressing those issues. A first workshop focused on training needs for bioinformatic and computational approaches in plant biology was held in 2016, and recommendations from that workshop have been published (Friesner et al.,Plant Physiology, 175, 2017, 1499). In this white paper, we provide a summary of the discussions and insights arising from the secondART‐21 workshop. The second workshop focused on experimental aspects of omics data acquisition and analysis and involved a broad spectrum of participants from academics and industry, ranging from graduate students through post‐doctorates, early career and established investigators. Our hope is that this article will inspire beginning and established scientists, corporations, and funding agencies to pursue directions in research and training identified by this workshop, capitalizing on the reference speciesArabidopsis thalianaand other valuable plant systems.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Effective research, education, and outreach efforts by theArabidopsis thalianacommunity, as well as other scientific communities that depend on Arabidopsis resources, depend vitally on easily available and publicly‐shared resources. These resources include reference genome sequence data and an ever‐increasing number of diverse data sets and data types.TAIR(The Arabidopsis Information Resource) and Araport (originally named the Arabidopsis Information Portal) are community informatics resources that provide tools, data, and applications to the more than 30,000 researchers worldwide that use in their work either Arabidopsis as a primary system of study or data derived from Arabidopsis. Four years after Araport's establishment, theIAICheld another workshop to evaluate the current status of Arabidopsis Informatics and chart a course for future research and development. The workshop focused on several challenges, including the need for reliable and current annotation, community‐defined common standards for data and metadata, and accessible and user‐friendly repositories/tools/methods for data integration and visualization. Solutions envisioned included (a) a centralized annotation authority to coalesce annotation from new groups, establish a consistent naming scheme, distribute this format regularly and frequently, and encourage and enforce its adoption. (b) Standards for data and metadata formats, which are essential, but challenging when comparing across diverse genotypes and in areas with less‐established standards (e.g., phenomics, metabolomics). Community‐established guidelines need to be developed. (c) A searchable, central repository for analysis and visualization tools. Improved versioning and user access would make tools more accessible. Workshop participants proposed a “one‐stop shop” website, an Arabidopsis “Super‐Portal” to link tools, data resources, programmatic standards, and best practice descriptions for each data type. This must have community buy‐in and participation in its establishment and development to encourage adoption.

    more » « less
  2. Summary

    The flowering plantArabidopsis thalianais a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, includingmRNA, the various classes of non‐codingRNA, and smallRNA. TheTAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago. Maintaining the accuracy of the annotation continues to be a prerequisite for future progress. Using an integrative annotation pipeline, we assembled tissue‐specificRNA‐Seq libraries from 113 datasets and constructed 48 359 transcript models of protein‐coding genes in eleven tissues. In addition, we annotated various classes of non‐codingRNAincluding microRNA, long intergenicRNA, small nucleolarRNA, natural antisense transcript, small nuclearRNA, and smallRNAusing published datasets and in‐house analytic results. Altogether, we identified 635 novel protein‐coding genes, 508 novel transcribed regions, 5178 non‐codingRNAs, and 35 846 smallRNAloci that were formerly unannotated. Analysis of the splicing events andRNA‐Seq based expression profiles revealed the landscapes of gene structures, untranslated regions, and splicing activities to be more intricate than previously appreciated. Furthermore, we present 692 uniformly expressed housekeeping genes, 43% of whose human orthologs are also housekeeping genes. This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further our understanding of the biological processes of this plant model but also of other species.

    more » « less
  3. Summary

    Light signal provides the spatial and temporal information for plants to adapt to the prevailing environmental conditions. Alterations in light quality and quantity can trigger robust changes in global gene expression. InArabidopsis thaliana, two groups of key factors regulating those changes in gene expression areCONSTITUTIVE PHOTOMORPHOGENESIS/DEETIOLATED/FUSCA(COP/DET/FUS) and a subset of basic helix‐loop‐helix transcription factors calledPHYTOCHROMEINTERACTING FACTORS(PIFs). Recently, rapid progress has been made in characterizing the E3 ubiquitin ligases for the light‐induced degradation ofPIF1,PIF3 andPIF4; however, the E3 ligase(s) forPIF5 remains unknown. Here, we show that theCUL4COP1–SPAcomplex is necessary for the red light‐induced degradation ofPIF5. Furthermore,COP1 andSPAproteins stabilizePIF5 in the dark, but promote the ubiquitination and degradation ofPIF5 in response to red light through the 26S proteasome pathway. Genetic analysis illustrates that overexpression ofPIF5can partially suppress bothcop1‐4andspaQseedling de‐etiolation phenotypes under dark and red‐light conditions. In addition, thePIF5 protein level cycles under both diurnal and constant light conditions, which is also defective in thecop1‐4andspaQbackgrounds. Bothcop1‐4andspaQshow defects in diurnal growth pattern. Overexpression ofPIF5partially restores growth defects incop1‐4andspaQunder diurnal conditions, suggesting that theCOP1–SPAcomplex plays an essential role in photoperiodic hypocotyl growth, partly through regulating thePIF5 level. Taken together, our data illustrate how theCUL4COP1–SPAE3 ligase dynamically controls thePIF5 level to regulate plant development.

    more » « less
  4. Abstract

    Brassinosteroids (BRs) are essential plant growth‐promoting hormones involved in many processes throughout plant development, from seed germination to flowering time. SinceBRsdo not undergo long‐distance transport, cell‐ and tissue‐specific regulation of hormone levels involves both biosynthesis and inactivation. To date, tenBR‐inactivating enzymes, with at least five distinct biochemical activities, have been experimentally identified in the model plantArabidopsis thaliana. Epigenetic interactions betweenT‐DNAinsertion alleles and genetic linkage have hindered analysis of higher‐order null mutants in these genes. A previous study demonstrated that thebas1‐2 sob7‐1 ben1‐1triple‐null mutant could not be characterized due to epigenetic interactions between the exonicT‐DNAinsertions inbas1‐2andsob7‐1,causing the intronicT‐DNAinsertion ofben1‐1to revert to a partial loss‐of‐function allele. We usedCRISPR‐Cas9genome editing to avoid this problem and generated thebas1‐2 sob7‐1 ben1‐3triple‐null mutant. This triple‐null mutant resulted in an additive seedling long‐hypocotyl phenotype. We also uncovered a role forBEN1‐mediatedBR‐inactivation in seedling cotyledon petiole elongation that was not observed in the singleben1‐2null mutant but only in the absence of bothBAS1andSOB7. In addition, genetic analysis demonstrated thatBEN1does not contribute to the early‐flowering phenotype, whichBAS1andSOB7redundantly regulate. Our results show thatBAS1,BEN1,andSOB7have overlapping and independent roles based on their differential spatiotemporal tissue expression patterns

    more » « less
  5. Summary

    The catalytic activity of mitogen‐activated protein kinases (MAPKs) is dynamically modified in plants. SinceMAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitorMAPKactivity in living plant cells would be valuable. Here, we report the development of a genetically encodedMAPKactivity sensor for use inArabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, aMAPKsubstrate domain and a flexible linker. Usingin vitrotesting, we demonstrated that phosphorylation causes an increase in the Förster resonance energy transfer (FRET) efficiency of the sensor. TheFRETefficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor ofMAPKactivity (SOMA) and performed live‐cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22 and chitin all led to rapid gains inFRETefficiency. Control lines expressing a version ofSOMAin which the phosphosite was mutated to an alanine did not show any substantial changes inFRET. We also expressed the sensor in a conditional loss‐of‐function double‐mutant line for the ArabidopsisMAPKgenesMPK3andMPK6. These experiments demonstrated thatMPK3/6 are necessary for the NaCl‐inducedFRETgain of the sensor, while otherMAPKs are probably contributing to the chitin and flg22‐induced increases inFRET. Taken together, our results suggest thatSOMAis able to dynamically reportMAPKactivity in living plant cells.

    more » « less