skip to main content

Title: Fully Printed Organic Electrochemical Transistors from Green Solvents

To achieve the full potential of scalable and cost‐effective organic electronic devices, developments are being made in both academic and industry environments to move toward continuous solution‐processing techniques that make use of safe and environmentally benign “green” solvents. In this work, the first example of a transistor device that is fully solution processed using only green solvents is demonstrated. This achievement is enabled through a novel multistage cleavable side chain process that provides aqueous solubility for semiconducting conjugated polymers, paired with aqueous inkjet printing of PEDOT:PSS electrodes, and a solution deposited ion gel electrolyte as the dielectric layer. The resulting organic electrochemical transistor devices operate in accumulation mode and reach maximum transconductance values of 1.1 mS at a gate voltage of − 1 V. Normalizing the transconductance value to the channel dimensions yieldsgm/W= 2200 S m−1(µC* = 22 F cm−1V−1s−1), making these devices suitable for a range of applications requiring small signal amplification such as transistors, biosensors, and ion pumps. This new material design and device process paves the way toward scalable, safe, and efficient production of organic electronic devices.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Organic electrochemical transistors (OECTs) hold promise for developing a variety of high‐performance (bio‐)electronic devices/circuits. While OECTs based on p‐type semiconductors have achieved tremendous progress in recent years, n‐type OECTs still suffer from low performance, hampering the development of power‐efficient electronics. Here, it is demonstrated that fine‐tuning the molecular weight of the rigid, ladder‐type n‐type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n‐type OECTs with record‐high geometry‐normalized transconductance (gm,norm ≈ 11 S cm−1) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm−1 V−1s−1), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high‐molecular‐weight BBL than in the low‐molecular‐weight counterpart. OECT‐based complementary inverters are also demonstrated with record‐high voltage gains of up to 100 V V−1and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub‐1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic–electronic conductors and open for a new generation of power‐efficient organic (bio‐)electronic devices.

    more » « less
  2. Abstract

    The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs.

    more » « less
  3. Abstract

    Conjugated‐polymer‐based organic electrochemical transistors (OECTs) are being studied for applications ranging from biochemical sensing to neural interfaces. While new polymers that interface digital electronics with the aqueous chemistry of life are being developed, the majority of high‐performance organic transistor materials are poor at transporting biologically relevant ions. Here, the operating mode of an organic transistor is changed from that of an electrolyte‐gated organic field‐effect transistor (EGOFET) to that of an OECT by incorporating an ion exchange gel between the active layer and the aqueous electrolyte. This device works by taking up biologically relevant ions from solution and injecting more hydrophobic ions into the active layer. Using poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl) thieno[3,2‐b]thiophene] as the active layer and a blend of an ionic liquid, 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, and poly(vinylidene fluoride‐co‐hexafluoropropylene) as the ion exchange gel, four orders of magnitude improvement in device transconductance and a 100‐fold increase in kinetics are demonstrated. The ability of the ion‐exchange‐gel OECT to record biological signals by measuring the action potentials of a Venus flytrap is demonstrated. These results show the possibility of using interface engineering to open up a wider palette of organic semiconductors as OECTs that can be gated by aqueous solutions.

    more » « less
  4. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces. 
    more » « less
  5. Abstract

    Organic electrochemical transistors (OECTs) have gained considerable attention due to their potential applications in emerging biosensor platforms. The use of conjugated polyelectrolytes (CPEs) as active materials in OECTs is particularly advantageous owing to their functional, water‐processable, and biocompatible nature, as well as their tunable electronic and ionic transport properties. However, there exists a lack of systematic studies of the structure‐property relationships of these materials with respect to OECT performance. This study shows how by tuning the molecular weight of self‐doped CPE (CPE‐K) it is possible to fabricate OECTs with aµC*value of 14.7 F cm−1V−1s−1, one order of magnitude higher than previously reported CPE‐based devices. Furthermore, OECTs with a transconductance of 120 mS are demonstrated via device engineering. While CPE‐K batches with different molecular weights show good doping behavior and high volumetric capacitance, as confirmed by spectroelectrochemistry and electrochemical impedance spectroscopy, the medium molecular weight possesses the highest carrier mobility of ≈0.1 cm2V−1s−1leading to the highest transconductance. The enhanced charge transport is due to a favorable charge percolation pathway, as revealed by the combination of X‐ray analysis and conductive atomic force microscope. These insights provide guidelines for further improving the performance of CPE‐based OECTs.

    more » « less