skip to main content


Title: Spin‐Polarized Electronic Transport through Ferromagnet/Organic–Inorganic Hybrid Perovskite Spinterfaces at Room Temperature
Abstract

Organic–inorganic hybrid perovskites (OIHPs) have been explosively investigated mainly due to their potential applications in optoelectronics. Despite the electronic charge transport, phenomena regarding the spin‐polarized electronic transport in OIHPs‐based spintronic devices and the role of ferromagnet/OIHP spinterfaces remain unclear. In this work, the spin injection, accumulation, transport, and detection at room temperature for a vertical perovskite spin valve (PeSV) consisting of Ni/CH3NH3PbI3−xClx/Ni is reported. An in‐plane anisotropic magnetoresistance (AMR) and a PeSV related magnetoresistance (MR) show remarkable magnetic switching behaviors due to the formation of Ni/CH3NH3PbI3−xClxspinterfaces, and the ferromagnetic coupling between two spin quantization axes of the spinterfaces. With assists of capacitance–frequency (C− −f) measurements under magnetic fields, the spin accumulation that occurs at the Ni/CH3NH3PbI3−xClxinterface can be detected at the spin parallel (↑↑) and antiparallel (↑↓) configurations. Owing to a strong orbital interaction at the Ni/CH3NH3PbI3−xClxhybrid interface, the spin‐sensitive electron paramagnetic spectroscopy (EPR) reveals significant change of the magnetic moment (µ). It is believed that the solution processed CH3NH3PbI3−xClxand the formation of the Ni/CH3NH3PbI3−xClxspinterface may hold an exceptionally important role for future hybrid optospintronic applications.

 
more » « less
NSF-PAR ID:
10460779
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
6
Issue:
19
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding interfacial reactions that occur between the active layer and charge‐transport layers can extend the stability of perovskite solar cells. In this study, the exposure of methylammonium lead iodide (CH3NH3PbI3) thin films prepared on poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)‐coated glass to 70% relative humidity (R.H.) leads to a perovskite crystal structure change from tetragonal to cubic within 2 days. Interface‐sensitive photoluminescence measurements indicate that the structural change originates at the PEDOT:PSS/perovskite interface. During exposure to 30% R.H., the same structural change occurs over a much longer time scale (>200 days), and a reflection consistent with the presence of (CH3)2NH2PbI3is detected to coexist with the cubic phase by X‐ray diffraction pattern. The authors propose that chemical interactions at the PEDOT:PSS/perovskite interface, facilitated by humidity, promote the formation of dimethylammonium, (CH3)2NH2+. The partial A‐site substitution of CH3NH3+for (CH3)2NH2+to produce a cubic (CH3NH3)1−x[(CH3)2NH2]xPbI3phase explains the structural change from tetragonal to cubic during short‐term humidity exposure. When (CH3)2NH2+content exceeds its solubility limit in the perovskite during longer humidity exposures, a (CH3)2NH2+‐rich, hexagonal phase of (CH3NH3)1−x[(CH3)2NH2]xPbI3emerges. These interfacial interactions may have consequences for device stability and performance beyond CH3NH3PbI3model systems and merit close attention from the perovskite research community.

     
    more » « less
  2. Abstract

    There has been a great deal of recent interest in extended compounds containing Ru3+and Ru4+in light of their range of unusual physical properties. Many of these properties are displayed in compounds with the perovskite and related structures. Here we report an array of structurally diverse hybrid ruthenium halide perovskites and related compounds: MA2RuX6(X=Cl or Br), MA2MRuX6(M=Na, K or Ag;X=Cl or Br) and MA3Ru2X9(X=Br) based upon the use of methylammonium (MA=CH3NH3+) on the perovskite A site. The compounds MA2RuX6with Ru4+crystallize in the trigonal space groupand can be described as vacancy‐ordered double‐perovskites. The ordered compounds MA2MRuX6with M+and Ru3+crystallize in a structure related to BaNiO3with alternatingMX6and RuX6face‐shared octahedra forming linear chains in the trigonalspace group. The compound MA3Ru2Br9crystallizes in the orthorhombic Cmcm space group and displays pairs of face‐sharing octahedra forming isolated Ru2Br9moieties with very short Ru–Ru contacts of 2.789 Å. The structural details, including the role of hydrogen bonding and dimensionality, as well as the optical and magnetic properties of these compounds are described. The magnetic behavior of all three classes of compounds is influenced by spin–orbit coupling and their temperature‐dependent behavior has been compared with the predictions of the appropriate Kotani models.

     
    more » « less
  3. Abstract

    There has been a great deal of recent interest in extended compounds containing Ru3+and Ru4+in light of their range of unusual physical properties. Many of these properties are displayed in compounds with the perovskite and related structures. Here we report an array of structurally diverse hybrid ruthenium halide perovskites and related compounds: MA2RuX6(X=Cl or Br), MA2MRuX6(M=Na, K or Ag;X=Cl or Br) and MA3Ru2X9(X=Br) based upon the use of methylammonium (MA=CH3NH3+) on the perovskite A site. The compounds MA2RuX6with Ru4+crystallize in the trigonal space groupand can be described as vacancy‐ordered double‐perovskites. The ordered compounds MA2MRuX6with M+and Ru3+crystallize in a structure related to BaNiO3with alternatingMX6and RuX6face‐shared octahedra forming linear chains in the trigonalspace group. The compound MA3Ru2Br9crystallizes in the orthorhombic Cmcm space group and displays pairs of face‐sharing octahedra forming isolated Ru2Br9moieties with very short Ru–Ru contacts of 2.789 Å. The structural details, including the role of hydrogen bonding and dimensionality, as well as the optical and magnetic properties of these compounds are described. The magnetic behavior of all three classes of compounds is influenced by spin–orbit coupling and their temperature‐dependent behavior has been compared with the predictions of the appropriate Kotani models.

     
    more » « less
  4. Abstract

    The emergence of ferromagnetism in materials where the bulk phase does not show any magnetic order demonstrates that atomically precise films can stabilize distinct ground states and expands the phase space for the discovery of materials. Here, the emergence of long-range magnetic order is reported in ultrathin (111) LaNiO3(LNO) films, where bulk LNO is paramagnetic, and the origins of this phase are explained. Transport and structural studies of LNO(111) films indicate that NiO6octahedral distortions stabilize a magnetic insulating phase at the film/substrate interface and result in a thickness-dependent metal–insulator transition att = 8 unit cells. Away from this interface, distortions relax and bulk-like conduction is regained. Synchrotron x-ray diffraction and dynamical x-ray diffraction simulations confirm a corresponding out-of-plane unit-cell expansion at the interface of all films. X-ray absorption spectroscopy reveals that distortion stabilizes an increased concentration of Ni2+ions. Evidence of long-range magnetic order is found in anomalous Hall effect and magnetoresistance measurements, likely due to ferromagnetic superexchange interactions among Ni2+–Ni3+ions. Together, these results indicate that long-range magnetic ordering and metallicity in LNO(111) films emerges from a balance among the spin, charge, lattice, and orbital degrees of freedom.

     
    more » « less
  5. Abstract

    The emergence of hybrid metal halides (HMH) materials, such as the archetypal CH3NH3PbBr3, provides an appealing material platform for solution-processed spintronic applications due to properties such as unprecedented large Rashba spin-splitting states and highly efficient spin-to-charge (StC) conversion efficiencies. Here we report the first study of StC conversion and spin relaxation time in MAPbBr3single crystals at room temperature using a spin pumping approach. Microwave frequency and power dependence of StC responses are both consistent with the spin pumping model, from which an inverse Rashba–Edelstein effect coherence length of up to ∼30 picometer is obtained, highlighting a good StC conversion efficiency. The magnetic field angular dependence of StC is investigated and can be well-explained by the spin precession model under oblique magnetic field. A long spin relaxation time of up to ∼190 picoseconds is obtained, which can be attributed to the surface Rashba state formed at the MAPbBr3interface. Our oblique Hanle effect by FMR-driven spin pumping technique provides a reliable and sensitive tool for measuring the spin relaxation time in various solution processed HMH single crystals.

     
    more » « less