skip to main content


Title: An identified ensemble within a neocortical circuit encodes essential information for genetically‐enhanced visual shape learning
Abstract

Advanced cognitive tasks are encoded in distributed neocortical circuits that span multiple forebrain areas. Nonetheless, synaptic plasticity and neural network theories hypothesize that essential information for performing these tasks is encoded in specific ensembles within these circuits. Relatively simpler subcortical areas contain specific ensembles that encode learning, suggesting that neocortical circuits contain such ensembles. Previously, using localized gene transfer of a constitutively active protein kinase C (PKC), we established that a genetically‐modified circuit in rat postrhinal cortex, part of the hippocampal formation, can encode some essential information for performing specific visual shape discriminations. However, these studies did not identify any specific neurons that encode learning; the entire circuit might be required. Here, we show that both learning and recall require fast neurotransmitter release from an identified ensemble within this circuit, the transduced neurons; we blocked fast release from these neurons by coexpressing a Synaptotagmin I siRNA with the constitutively active PKC. During learning or recall, specific signaling pathways required for learning are activated in this ensemble; during learning, calcium/calmodulin‐dependent protein kinase II, MAP kinase, and CREB are activated; and, during recall, dendritic protein synthesis and CREB are activated. Using activity‐dependent gene imaging, we showed that during learning, activity in this ensemble is required to recruit and activate the circuit. Further, after learning, during image presentation, blocking activity in this ensemble reduces accuracy, even though most of the rest of the circuit is activated. Thus, an identified ensemble within a neocortical circuit encodes essential information for performing an advanced cognitive task.

 
more » « less
NSF-PAR ID:
10460787
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hippocampus
Volume:
29
Issue:
8
ISSN:
1050-9631
Page Range / eLocation ID:
p. 710-725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Key points

    The angiotensin AT1 receptor expression and protein kinase C (PKC)‐mediated NMDA receptor phosphorylation levels in the hypothalamus are increased in a rat genetic model of hypertension.

    Blocking AT1 receptors or PKC activity normalizes the increased pre‐ and postsynaptic NMDA receptor activity of hypothalamic presympathetic neurons in hypertensive animals.

    Inhibition of AT1 receptor–PKC activity in the hypothalamus reduces arterial blood pressure and sympathetic nerve discharges in hypertensive animals.

    AT1 receptors in the hypothalamus are endogenously activated to sustain NMDA receptor hyperactivity and elevated sympathetic outflow via PKC in hypertension.

    Abstract

    Increased synapticN‐methyl‐d‐aspartate receptor (NMDAR) activity in the hypothalamic paraventricular nucleus (PVN) plays a major role in elevated sympathetic output in hypertension. Although exogenous angiotensin II (AngII) can increase NMDAR activity in the PVN, whether endogenous AT1 receptor–protein kinase C (PKC) activity mediates the augmented NMDAR activity of PVN presympathetic neurons in hypertension is unclear. Here we show that blocking AT1 receptors with losartan or inhibiting PKC with chelerythrine significantly decreased the frequency of NMDAR‐mediated miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of puff NMDA currents of retrogradely labelled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs). Also, treatment with chelerythrine abrogated the potentiating effect of AngII on mEPSCs and puff NMDA currents of labelled PVN neurons in SHRs. In contrast, neither losartan nor chelerythrine had any effect on mEPSCs or puff NMDA currents in labelled PVN neurons in Wistar–Kyoto (WKY) rats. Furthermore, levels of AT1 receptor mRNA and PKC‐mediated NMDAR phosphorylation in the PVN were significantly higher in SHRs than in WKY rats. In addition, microinjection of losartan or chelerythrine into the PVN substantially reduced blood pressure and renal sympathetic nerve discharges in SHRs but not in WKY rats. Chelerythrine blocked sympathoexcitatory responses to AngII microinjected into the PVN. Our findings suggest that endogenous AT1 receptor–PKC activity is essential for presynaptic and postsynaptic NMDAR hyperactivity of PVN presympathetic neurons and for the augmented sympathetic outflow in hypertension. This information advances our mechanistic understanding of the interplay between angiotensinergic and glutamatergic excitatory inputs in hypertension.

     
    more » « less
  2. Survival relies on the ability to flexibly choose between different actions according to varying environmental circumstances. Many lines of evidence indicate that action selection involves signaling in corticostriatal circuits, including the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS). While choice-specific responses have been found in individual neurons from both areas, it is unclear whether populations of OFC or DMS neurons are better at encoding an animal’s choice. To address this, we trained head-fixed mice to perform an auditory guided two-alternative choice task, which required moving a joystick forward or backward. We then used silicon microprobes to simultaneously measure the spiking activity of OFC and DMS ensembles, allowing us to directly compare population dynamics between these areas within the same animals. Consistent with previous literature, both areas contained neurons that were selective for specific stimulus-action associations. However, analysis of concurrently recorded ensemble activity revealed that the animal’s trial-by-trial behavior could be decoded more accurately from DMS dynamics. These results reveal substantial regional differences in encoding action selection, suggesting that DMS neural dynamics are more specialized than OFC at representing an animal’s choice of action. NEW & NOTEWORTHY While previous literature shows that both orbitofrontal cortex (OFC) and dorsomedial striatum (DMS) represent information relevant to selecting specific actions, few studies have directly compared neural signals between these areas. Here we compared OFC and DMS dynamics in mice performing a two-alternative choice task. We found that the animal’s choice could be decoded more accurately from DMS population activity. This work provides among the first evidence that OFC and DMS differentially represent information about an animal’s selected action. 
    more » « less
  3. Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning. 
    more » « less
  4. Abstract

    Neuronal ensembles are groups of neurons with correlated activity associated with sensory, motor, and behavioral functions. To explore how ensembles encode information, we investigated responses of visual cortical neurons in awake mice using volumetric two-photon calcium imaging during visual stimulation. We identified neuronal ensembles employing an unsupervised model-free algorithm and, besides neurons activated by the visual stimulus (termed “onsemble”), we also find neurons that are specifically inactivated (termed “offsemble”). Offsemble neurons showed faster calcium decay during stimuli, suggesting selective inhibition. In response to visual stimuli, each ensemble (onsemble+offsemble) exhibited small trial-to-trial variability, high orientation selectivity, and superior predictive accuracy for visual stimulus orientation, surpassing the sum of individual neuron activity. Thus, the combined selective activation and inactivation of cortical neurons enhances visual encoding as an emergent and distributed neural code.

     
    more » « less
  5. Cortical computations emerge from the dynamics of neurons embedded in complex cortical circuits. Within these circuits, neuronal ensembles, which represent subnetworks with shared functional connectivity, emerge in an experience-dependent manner. Here we induced ensembles inex vivocortical circuits from mice of either sex by differentially activating subpopulations through chronic optogenetic stimulation. We observed a decrease in voltage correlation, and importantly a synaptic decoupling between the stimulated and nonstimulated populations. We also observed a decrease in firing rate during Up-states in the stimulated population. These ensemble-specific changes were accompanied by decreases in intrinsic excitability in the stimulated population, and a decrease in connectivity between stimulated and nonstimulated pyramidal neurons. By incorporating the empirically observed changes in intrinsic excitability and connectivity into a spiking neural network model, we were able to demonstrate that changes in both intrinsic excitability and connectivity accounted for the decreased firing rate, but only changes in connectivity accounted for the observed decorrelation. Our findings help ascertain the mechanisms underlying the ability of chronic patterned stimulation to create ensembles within cortical circuits and, importantly, show that while Up-states are a global network-wide phenomenon, functionally distinct ensembles can preserve their identity during Up-states through differential firing rates and correlations.

    SIGNIFICANCE STATEMENTThe connectivity and activity patterns of local cortical circuits are shaped by experience. This experience-dependent reorganization of cortical circuits is driven by complex interactions between different local learning rules, external input, and reciprocal feedback between many distinct brain areas. Here we used anex vivoapproach to demonstrate how simple forms of chronic external stimulation can shape local cortical circuits in terms of their correlated activity and functional connectivity. The absence of feedback between different brain areas and full control of external input allowed for a tractable system to study the underlying mechanisms and development of a computational model. Results show that differential stimulation of subpopulations of neurons significantly reshapes cortical circuits and forms subnetworks referred to as neuronal ensembles.

     
    more » « less