Abstract Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation.But, what controls the distribution of barium (Ba) in the oceans?Here, we investigated the Arctic Ocean Ba cycle through a one‐of‐a‐kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean‐derived waters and Baffin Bay‐derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.
more »
« less
Biogeochemical Cycling of Dissolved Zinc in the Western Arctic (Arctic GEOTRACES GN01)
Abstract The biogeochemical cycling of dissolved zinc (dZn) was investigated in the Western Arctic along the U.S. GEOTRACES GN01 section. Vertical profiles of dZn in the Arctic are strikingly different than the classic “nutrient‐type” profile commonly seen in the Atlantic and Pacific Oceans, instead exhibiting higher surface concentrations (~1.1 nmol/kg), a shallow subsurface absolute maximum (~4–6 nmol/kg) at 200 m coincident with a macronutrient maximum, and low deep water concentrations (~1.3 nmol/kg) that are homogeneous (sp.) with depth. In contrast to other ocean basins, typical inputs such as rivers, atmospheric inputs, and especially deep remineralization are insignificant in the Arctic. Instead, we demonstrate that dZn distributions in the Arctic are controlled primarily by (1) shelf fluxes following the sediment remineralization of high Zn:C and Zn:Si cells and the seaward advection of those fluxes and (2) mixing of dZn from source waters such as the Atlantic and Pacific Oceans rather than vertical biological regeneration of dZn. This results in both the unique profile shapes and the largely decoupled relationship between dZn and Si found in the Arctic. We found a weak dZn:Si regression in the full water column (0.077 nmol/μmol,r2 = 0.58) that is higher than the global slope (0.059 nmol/μmol,r2 = 0.94) because of the shelf‐derived halocline dZn enrichments. We hypothesize that the decoupling of Zn:Si in Western Arctic deep waters results primarily from a past ventilation event with unique preformed Zn:Si stoichiometries.
more »
« less
- Award ID(s):
- 1919716
- PAR ID:
- 10460788
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 33
- Issue:
- 3
- ISSN:
- 0886-6236
- Page Range / eLocation ID:
- p. 343-369
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess230Th activities. Th‐normalized pBaxsfluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxsburial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.more » « less
-
There have been many changes over the past few decades in the physical environment and ecosystem health of the Arctic Ocean, which is a sentinel of global warming. Bioactive trace metal data of important micronutrients for algae across the global ocean, such as iron (Fe) and manganese (Mn), are key indicators of biogeochemical change. However, trace metal data in the Arctic have been historically sparse and generally confined to ice-free regions. In 2015, three major GEOTRACES expeditions sought to resolve trace metal distributions across the Arctic, covering the western, eastern, and Canadian Arctic sectors. The diverse Arctic shelves displayed unique controls on Fe and Mn cycling due to differing chemical, biological, and physical properties. Here, we contrast the shallow, reducing Chukchi Shelf in the western Arctic with the tidally forced, advective Canadian Arctic and the deeper, less productive Barents Shelf in the eastern Arctic. Reductive dissolution and physical resuspension both proved to be large sources of Fe and Mn to the Arctic and the North Atlantic outflow. In the isolated intermediate and deep waters, one-dimensional scavenging in the western and eastern Arctic contrasts with vertical biological signals in Baffin Bay and the Labrador Sea.more » « less
-
Abstract To examine seasonal and regional variabilities in metabolic status and the coupling of net community production (NCP) and air‐sea CO2fluxes in the western Arctic Ocean, we collected underway measurements of surface O2/Ar and partial pressure of CO2(pCO2) in the summers of 2016 and 2018. With a box‐model, we demonstrate that accounting for local sea ice history (in addition to wind history) is important in estimating NCP from biological oxygen saturation (Δ(O2/Ar)) in polar regions. Incorporating this sea ice history correction, we found that most of the western Arctic exhibited positive Δ(O2/Ar) and negativepCO2saturation, Δ(pCO2), indicative of net autotrophy but with the relationship between the two parameters varying regionally. In the heavy ice‐covered areas, where air‐sea gas exchange was suppressed, even minor NCP resulted in relatively high Δ(O2/Ar) and lowpCO2in water due to limited gas exchange. Within the marginal ice zone, NCP and CO2flux magnitudes were strongly inversely correlated, suggesting an air to sea CO2flux induced primarily by biological CO2removal from surface waters. Within ice‐free waters, the coupling of NCP and CO2flux varied according to nutrient supply. In the oligotrophic Canada Basin, NCP and CO2flux were both small, controlled mainly by air‐sea gas exchange. On the nutrient‐rich Chukchi Shelf, NCP was strong, resulting in great O2release and CO2uptake. This regional overview of NCP and CO2flux in the western Arctic Ocean, in its various stages of ice‐melt and nutrient status, provides useful insight into the possible biogeochemical evolution of rapidly changing polar oceans.more » « less
-
Abstract The deep ocean releases large amounts of old, pre‐industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2release is relevant to the global climate because its changes could alter atmospheric CO2levels on long time scales, and also affects the present‐day potential of the Southern Ocean to take up anthropogenic CO2. Here, year‐round profiling float measurements show that this CO2release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea‐ice edge. This band of high CO2subsurface water coincides with the outcropping of the 27.8 kg m−3isoneutral density surface that characterizes Indo‐Pacific Deep Water (IPDW). It has a potential partial pressure of CO2exceeding current atmospheric CO2levels (∆PCO2) by 175 ± 32 μatm. Ship‐based measurements reveal that IPDW exhibits a distinct ∆PCO2maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2decreases. Most of this vertical ∆PCO2decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2outgassing from the high‐carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.more » « less
An official website of the United States government
