skip to main content


Title: Biogeochemical Cycling of Dissolved Zinc in the Western Arctic (Arctic GEOTRACES GN01)
Abstract

The biogeochemical cycling of dissolved zinc (dZn) was investigated in the Western Arctic along the U.S. GEOTRACES GN01 section. Vertical profiles of dZn in the Arctic are strikingly different than the classic “nutrient‐type” profile commonly seen in the Atlantic and Pacific Oceans, instead exhibiting higher surface concentrations (~1.1 nmol/kg), a shallow subsurface absolute maximum (~4–6 nmol/kg) at 200 m coincident with a macronutrient maximum, and low deep water concentrations (~1.3 nmol/kg) that are homogeneous (sp.) with depth. In contrast to other ocean basins, typical inputs such as rivers, atmospheric inputs, and especially deep remineralization are insignificant in the Arctic. Instead, we demonstrate that dZn distributions in the Arctic are controlled primarily by (1) shelf fluxes following the sediment remineralization of high Zn:C and Zn:Si cells and the seaward advection of those fluxes and (2) mixing of dZn from source waters such as the Atlantic and Pacific Oceans rather than vertical biological regeneration of dZn. This results in both the unique profile shapes and the largely decoupled relationship between dZn and Si found in the Arctic. We found a weak dZn:Si regression in the full water column (0.077 nmol/μmol,r2 = 0.58) that is higher than the global slope (0.059 nmol/μmol,r2 = 0.94) because of the shelf‐derived halocline dZn enrichments. We hypothesize that the decoupling of Zn:Si in Western Arctic deep waters results primarily from a past ventilation event with unique preformed Zn:Si stoichiometries.

 
more » « less
Award ID(s):
1919716
NSF-PAR ID:
10460788
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
33
Issue:
3
ISSN:
0886-6236
Page Range / eLocation ID:
p. 343-369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess230Th activities. Th‐normalized pBaxsfluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxsburial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.

     
    more » « less
  2. Abstract

    Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation.But, what controls the distribution of barium (Ba) in the oceans?Here, we investigated the Arctic Ocean Ba cycle through a one‐of‐a‐kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean‐derived waters and Baffin Bay‐derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.

     
    more » « less
  3. Abstract

    Recent studies, including many from the GEOTRACES program, have expanded our knowledge of trace metals in the Arctic Ocean, an isolated ocean dominated by continental shelf and riverine inputs. Here, we report a unique, pan‐Arctic linear relationship between dissolved copper (Cu) and nickel (Ni) present north of 60°N that is absent in other oceans. The correlation is driven primarily by high Cu and Ni concentrations in the low salinity, river‐influenced surface Arctic and low, homogeneous concentrations in Arctic deep waters, opposing their typical global distributions. Rivers are a major source of both metals, which is most evident within the central Arctic's Transpolar Drift. Local decoupling of the linear Cu‐Ni relationship along the Chukchi Shelf and within the Canada Basin upper halocline reveals that Ni is additionally modified by biological cycling and shelf sediment processes, while Cu is mostly sourced from riverine inputs and influenced by mixing. This observation highlights differences in their chemistries: Cu is more prone to complexation with organic ligands, stabilizing its riverine source fluxes into the Arctic, while Ni is more labile and is dominated by biological processes. Within the Canadian Arctic Archipelago, an important source of Arctic water to the Atlantic Ocean, contributions of Cu and Ni from meteoric waters and the halocline are attenuated during transit to the Atlantic. Additionally, Cu and Ni in deep waters diminish with age due to isolation from surface sources, with higher concentrations in the younger Eastern Arctic basins and lower concentrations in the older Western Arctic basins.

     
    more » « less
  4. Abstract

    We determined the impact of anthropogenic CO2(Cant) accumulation on the δ13C of dissolved inorganic carbon in the Arctic Ocean (i.e., the13C Suess effect) based on δ13C measurements during a GEOTRACES cruise in 2015. The δ13C decrease was estimated from the amount of Cantchange derived by the transit time distribution approach and the ratio of the anthropogenic δ13C/dissolved inorganic carbon change (RC). A significant Cantincrease (up to 45 μmol kg−1) and δ13C decrease (up to −0.9‰) extends to ~2,000 m in the Canada and Makarov Basin. We find distinctly different RC values for the intermediate water (300–2,000 m) and upper halocline water (<200 m) of −0.020 and −0.012‰ (μmol kg−1)−1, respectively, which identifies two sources of Cantaccumulation from North Atlantic and North Pacific. Furthermore, estimated RC for intermediate waters is the same as the RC observed in the Greenland Sea and the rate of anthropogenic dissolved inorganic carbon increase estimated for intermediate waters at 0.9 μmol kg−1yr−1is identical to the estimated rate in the Iceland Sea. These observations indicate that the high rate of Cantaccumulation and δ13C decrease in the Arctic Ocean is primarily a result of the input of Cant, via ventilation of intermediate waters, from the Nordic Sea rather than local anthropogenic CO2uptake within the Arctic Basin. We determine the preindustrial δ13C (δ13CPI) distributions and find distinct δ13CPIsignatures of the intermediate and upper halocline waters that reflect the difference in δ13CPI–PO4relationship of Atlantic and Pacific source water.

     
    more » « less
  5. Abstract

    Determining the proportions of Atlantic and Pacific Ocean seawater entering the Arctic Ocean is important both for understanding the mass balance of this basin as well as its contribution to formation of North Atlantic deep water. To quantify the distribution and amount of Pacific and Atlantic origin seawater in the western Arctic Ocean, we used dissolved Ga in a four‐component linear endmember mixing model. Previously, nutrients, combined in their Redfield ratios, have been used to separate Pacific‐ and Atlantic‐derived waters. These nutrient tracers are not conservative in practice, and there is a need to find quantities that are conserved. Dissolved Ga concentrations show measurable contrast between Atlantic and Pacific source waters, shelf‐influenced waters show little impact of shelf processes on the dissolved Ga distribution, and dissolved Ga in the Arctic basins is conserved along isopycnal surfaces. Thus, we explored the potential of Ga as a new parameter in Arctic source water deconvolution. The Ga‐informed deconvolution was compared to that generated with the NO3:PO4relationship. While distributions of the water masses were qualitatively similar, the Ga‐based deconvolution predicted higher amounts of Pacific water at depths between 150 and 300 m. The Ga‐based decomposition yields a smoother transition between the halocline and Atlantic layers, while nutrient‐based solutions have sharper transitions. A 1‐D advection‐diffusion model was used to constrain estimates of vertical diffusivity (Kz). The Ga‐based Kzestimates agreed better with those from salinity and temperature than the nutrient method. The Ga‐based approach implies greater vertical mixing between the Pacific and Atlantic waters.

     
    more » « less