Progress in soft and stretchable electronics depends on energy sources that are mechanically compliant, elastically deformable, and renewable. Energy harvesting using triboelectric nanogenerators (TENGs) made from soft materials provides a promising approach to address this critical need. Here, an elastomeric composite is introduced with sedimented liquid metal (LM) droplets for TENG‐based energy harvesting that relies on assembly of the LM to form phase‐separated conductive and insulating regions. The sedimented LM elastomer TENG (SLM‐TENG) exhibits ultrahigh stretchability (strain limit
The development of wearable, all‐in‐one sensors that can simultaneously monitor several hazard conditions in a real‐time fashion imposes the emergent requirement for a smart and stretchable hazard avoidance sensing platform that is stretchable and skin‐like. Multifunctional sensors with these features are problematic and challenging to accomplish. In this context, a multimodal ferrofluid‐based triboelectric nanogenerator (FO‐TENG), featuring sensing capabilities to a variety of hazard stimulus such as a strong magnetic field, noise level, and falling or drowning is reported. The FO‐TENG consists of a deformable elastomer tube filled with a ferrofluid, as a triboelectric layer, surrounded by a patterned copper wire, as an electrode, endowing the FO‐TENG with excellent waterproof ability, conformability, and stretchability (up to 300%). In addition, The FO‐TENG is highly flexible and sustains structural integrity and detection capability under repetitive deformations, including bending and twisting. This FO‐TENG represents a smart multifaceted sensing platform that has a unique capacity in diverse applications including hazard preventive wearables, and remote healthcare monitoring.
more » « less- PAR ID:
- 10461046
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 31
- Issue:
- 11
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract > 500% strain), skin‐like compliance (modulus< 60 kPa), reliable device stability (> 10 000 cycles), and appreciable electrical output performance (max peak power density= 1 mW cm−2). SLM‐TENGs can be integrated with highly elastic stretchable fabrics, thereby enabling broad integration with wearable electronics. A stretchable and wearable SLM‐TENG is demonstrated that harvests energy from human motion through a patch attached to the knee or integrated into exercise clothing. This body‐mounted TENG device can generate enough electricity to fully power a wearable computing device (hygro‐thermometer with digital display) after 2.2 min of running on a treadmill. -
Abstract Triboelectric nanogenerator (TENG) devices are extensively studied as a mechanical energy harvester and self‐powered sensor for wearable electronics and physiological monitoring. However, the conventional TENG fabrication involving assembling steps and using the single property of matrix material suffers from simple devices shape and a single level of mechanical response for sensing and energy harvesting. Here, the printed multimaterial matrix for multilevel mechanical‐responsive TENG with on‐demand reconfiguration of shape is reported. A multimaterial 3D printing approach by using dynamic photomask‐assisted direct ink writing printing together with a two‐stage curing hybrid ink is first developed. Multimaterial structures with location‐specific properties, such as tensile modulus, failure stress, and glass transition temperature for controlled deformation, crack propagation path, and sequential shape memory, are directly printed. The printed multimaterial structure with sequential deformation behavior is used to fabricate a multilevel‐TENG (mTENG) device for multiple level mechanical energy harvesters and sensors. It is demonstrated that the mTENG can be embedded in shoe insoles to achieve both comfortable wearing and motion state monitoring. This work provides a new approach to combine multimaterial 3D printing with TENG devices for functional wearable electronics as energy harvester and sensors.
-
Abstract Multifunctional metamaterials (MFMs) capable of energy harvesting and vibration control are particularly attractive for smart structures, wearable/biointegrated electronics, and intelligent robotics. Here, a novel MFM based on triboelectric nanogenerators (TENGs), which can harvest environmental energy and reduce vibration simultaneously, is reported. The unit cells of the MFM consist of a local resonator, an integrated contact‐ separation mode TENG, and spiral‐shaped connecting beams. A multiphysics theoretical model is developed for quantitatively evaluating the performance of the MFM by including the mechanical and electrical fields interactions, which is further validated by experimental testing. It is demonstrated that the TENG‐based MFM can not only effectively harvest vibration energy to power electronics but also dramatically suppress low‐frequency mechanical vibration. This work provides a new design and model for developing novel TENG‐based MFMs for advanced smart systems used in a variety of applications.
-
Abstract The flexibility of planar triboelectric nanogenerators (TENGs) enables them to be embedded into structures with complex geometries and to conform with any deformation of these structures. In return, the embedded TENGs function as either strain‐sensitive active sensors or energy harvesters while negligibly affecting the structure's original mechanical properties. This advantage inspires a new class of multifunctional materials where compliant TENGs are distributed into local operational units of mechanical metamaterial, dubbed TENG‐embedded mechanical metamaterials. This new class of metamaterial inherits the advantages of a traditional mechanical metamaterial, in that the deformation of the internal topology of material enables unusual mechanical properties. The concept is illustrated with experimental investigations and finite element simulations of prototypes based on two exemplar metamaterial geometries where functions of self‐powered sensing, energy harvesting, as well as the designated mechanical behavior are investigated. This work provides a new framework in producing multifunctional triboelectric devices.
-
A triboelectric nanogenerator (TENG) is one of the most significantly innovative microdevices for built-in energy harvesting with wearable and portable electronics. In this study, the forcespinning technology was used to synthesize a nanofiber (NF) mat-based TENG. Polyvinylidene fluoride (PVDF) membrane was used as the negative triboelectric electrode/pole, and chemically designed and functionalized thermoplastic polyurethane (TPU) was used as the positive electrode/pole for the TENG. The electronic interference, sensitivity, and gate voltage of the synthesized microdevices were investigated using chemically modified bridging of multi-walled carbon nanotubes (MWCNT) with a TPU polymer repeating unit and bare TPU-based positive electrodes. The chemical functionality of TPU NF was integrated during the NF preparation step. The morphological features and the chemical structure of the nanofibers were characterized using a field emission scanning electron microscope and Fourier-transform infrared spectroscopy. The electrical output of the fabricated MWCNT-TPU/PVDF TENG yielded a maximum of 212 V in open circuit and 70 µA in short circuit at 240 beats per minute, which proved to be 79% and 15% higher than the TPU/PDVF triboelectric nanogenerator with an electronic contact area of 3.8 × 3.8 cm2, which indicates that MWCNT enhanced the electron transportation facility, which results in significantly enhanced performance of the TENG. This device was further tested for its charging capacity and sensory performance by taking data from different body parts, e.g., the chest, arms, feet, hands, etc. These results show an impending prospect and versatility of the chemically functionalized materials for next-generation applications in sensing and everyday energy harvesting technology.