skip to main content


This content will become publicly available on June 21, 2024

Title: Structural basis of mitochondrial protein import by the TIM23 complex
Mitochondria import nearly all of their approximately 1,000–2,000 constituent proteins from the cytosol across their double-membrane envelope1,2,3,4,5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6,7,8,9,10,11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17–Tim23–Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.  more » « less
Award ID(s):
1806833
NSF-PAR ID:
10461054
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature
ISSN:
0028-0836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    The translocase of the mitochondrial inner membrane (TIM) imports most of the nucleus‐encoded proteins that are destined for the matrix, inner membrane (IM) and the intermembrane space (IMS).Trypanosoma brucei, the infectious agent for African trypanosomiasis, possesses a unique TIM complex consisting of several novel proteins in association with a relatively conserved protein TbTim17. Tandem affinity purification of the TbTim17 protein complex revealed TbTim54 as a potential component of this complex.

    Results

    TbTim54, a trypanosome‐specific IMS protein, is peripherally associated with the IM and is present in a protein complex slightly larger than the TbTim17 complex. TbTim54 knockdown (KD) reduced the import of TbTim17 and compromised the integrity of the TbTim17 complex. TbTim54 KD inhibited thein vitromitochondrial import and assembly of the internal signal‐containing mitochondrial carrier proteins MCP3, MCP5 and MCP11 to a greater extent than TbTim17 KD. Furthermore, TbTim54 KD, but not TbTim17 KD, significantly hampered the mitochondrial targeting of ectopically expressed MCP3 and MCP11. These observations along with our previous finding that the mitochondrial import of N‐terminal signal‐containing proteins like cytochrome oxidase subunit 4 and MRP2 was affected to a greater extent by TbTim17 KD than TbTim54 KD indicating a substrate‐specificity of TbTim54 for internal‐signal containing mitochondrial proteins. In other organisms, small Tim chaperones in the IMS are known to participate in the translocation of MCPs. We found that TbTim54 can directly interact with at least two of the six known small TbTim proteins, TbTim11 and TbTim13, as well as with the N‐terminal domain of TbTim17.

    Conclusion

    TbTim54 interacts with TbTim17. It also plays a crucial role in the mitochondrial import and complex assembly of internal signal‐containing IM proteins inT. brucei.

    Significance

    We are the first to characterise TbTim54, a novel TbTim that is involved primarily in the mitochondrial import of MCPs and TbTim17 inT. brucei.

     
    more » « less
  2. Asparagine-linked glycosylation, also known as N-linked glycosylation is an essential and highly conserved post-translational protein modification that occurs in all three domains of life. This modification is essential for specific molecular recognition, protein folding, sorting in the endoplasmic reticulum, cell–cell communication, and stability. Defects in N-linked glycosylation results in a class of inherited diseases known as congenital disorders of glycosylation (CDG). N-linked glycosylation occurs in the endoplasmic reticulum (ER) lumen by a membrane associated enzyme complex called the oligosaccharyltransferase (OST). In the central step of this reaction, an oligosaccharide group is transferred from a lipid-linked dolichol pyrophosphate donor to the acceptor substrate, the side chain of a specific asparagine residue of a newly synthesized protein. The prokaryotic OST enzyme consists of a single polypeptide chain, also known as single subunit OST or ssOST. In contrast, the eukaryotic OST is a complex of multiple non-identical subunits. In this review, we will discuss the biochemical and structural characterization of the prokaryotic, yeast, and mammalian OST enzymes. This review explains the most recent high-resolution structures of OST determined thus far and the mechanistic implication of N-linked glycosylation throughout all domains of life. It has been shown that the ssOST enzyme, AglB protein of the archaeon Archaeoglobus fulgidus, and the PglB protein of the bacterium Campylobactor lari are structurally and functionally similar to the catalytic Stt3 subunit of the eukaryotic OST enzyme complex. Yeast OST enzyme complex contains a single Stt3 subunit, whereas the human OST complex is formed with either STT3A or STT3B, two paralogues of Stt3. Both human OST complexes, OST-A (with STT3A) and OST-B (containing STT3B), are involved in the N-linked glycosylation of proteins in the ER. The cryo-EM structures of both human OST-A and OST-B complexes were reported recently. An acceptor peptide and a donor substrate (dolichylphosphate) were observed to be bound to the OST-B complex whereas only dolichylphosphate was bound to the OST-A complex suggesting disparate affinities of two OST complexes for the acceptor substrates. However, we still lack an understanding of the independent role of each eukaryotic OST subunit in N-linked glycosylation or in the stabilization of the enzyme complex. Discerning the role of each subunit through structure and function studies will potentially reveal the mechanistic details of N-linked glycosylation in higher organisms. Thus, getting an insight into the requirement of multiple non-identical subunits in the N-linked glycosylation process in eukaryotes poses an important future goal. 
    more » « less
  3. Protein import into chloroplasts is carried out by the protein translocons at the outer and inner envelope membranes (TOCandTIC). Detailed structures for these translocons are lacking, with only a low‐resolutionTOCcomplex structure available. Recently, we showed that theTOC/TICtranslocons can import folded proteins, a rather unique feat for a coupled double membrane system. We also determined the maximum functionalTOC/TICpore size to be 30–35 Å. Here, we discuss how such large pores could form and compare the structural dynamics of the pore‐forming Toc75 subunit to its bacterial/mitochondrial Omp85 family homologs. We put forward structural models that can be empirically tested and also briefly review the pore dynamics of other protein translocons with known structures.

     
    more » « less
  4. Abstract

    Mitochondrial DNA (mtDNA) is known to play a critical role in cellular functions. However, the fluorescent probe enantio-selectively targeting live-cell mtDNA is rare. We recently found that the well-known DNA ‘light-switch’ [Ru(phen)2dppz]Cl2 can image nuclear DNA in live-cells with chlorophenolic counter-anions via forming lipophilic ion-pairing complex. Interestingly, after washing with fresh-medium, [Ru(phen)2dppz]Cl2 was found to re-localize from nucleus to mitochondria via ABC transporter proteins. Intriguingly, the two enantiomers of [Ru(phen)2dppz]Cl2 were found to bind enantio-selectively with mtDNA in live-cells not only by super-resolution optical microscopy techniques (SIM, STED), but also by biochemical methods (mitochondrial membrane staining with Tomo20-dronpa). Using [Ru(phen)2dppz]Cl2 as the new mtDNA probe, we further found that each mitochondrion containing 1–8 mtDNA molecules are distributed throughout the entire mitochondrial matrix, and there are more nucleoids near nucleus. More interestingly, we found enantio-selective apoptotic cell death was induced by the two enantiomers by prolonged visible light irradiation, and in-situ self-monitoring apoptosis process can be achieved by using the unique ‘photo-triggered nuclear translocation’ property of the Ru complex. This is the first report on enantio-selective targeting and super-resolution imaging of live-cell mtDNA by a chiral Ru complex via formation and dissociation of ion-pairing complex with suitable counter-anions.

     
    more » « less
  5. Abstract

    Protein‐based biomaterials have played a key role in tissue engineering, and additional exciting applications as self‐healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram‐positive bacteriumBacillus subtiliscan be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion‐catalyzed assembly (SCA). Secreted silk fibers form self‐healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials fromBacilluscells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.

     
    more » « less