It is proved that for every countable structure
We prove that a WLD subspace of the space
- NSF-PAR ID:
- 10461075
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Mathematische Nachrichten
- Volume:
- 292
- Issue:
- 9
- ISSN:
- 0025-584X
- Page Range / eLocation ID:
- p. 2028-2031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract and a computable successor ordinal α there is a countable structure which is ‐least among all countable structures such that is Σ‐definable in the αth jump . We also show that this result does not hold for the limit ordinal . Moreover, we prove that there is no countable structure with the degree spectrum for . -
Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple system
on vertices and any 3‐uniform hypertree on vertices, is it necessary that contains as a subgraph provided ? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. -
Abstract A graph
G is said to be 2‐divisible if for all (nonempty) induced subgraphsH ofG ,can be partitioned into two sets such that and . (Here denotes the clique number of G , the number of vertices in a largest clique ofG ). A graphG is said to be perfectly divisible if for all induced subgraphsH ofG ,can be partitioned into two sets such that is perfect and . We prove that if a graph is ‐free, then it is 2‐divisible. We also prove that if a graph is bull‐free and either odd‐hole‐free or P 5‐free, then it is perfectly divisible. -
Abstract Let
be the random directed graph on n vertices where each of thepossible arcs is present independently with probability p . A celebrated result of Frieze shows that ifthen typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in is typically . We also prove a hitting‐time version of this statement, showing that in the random directed graph process, as soon as every vertex has in‐/out‐degrees at least 1, there are typically directed Hamilton cycles. -
Abstract A graph is said to be
‐universal if it contains every graph with n vertices and maximum degree at most Δ as a subgraph. Dellamonica, Kohayakawa, Rödl and Ruciński used a “matching‐based” embedding technique introduced by Alon and Füredi to show that the random graphis asymptotically almost surely ‐universal for , a threshold for the property that every subset of Δ vertices has a common neighbor. This bound has become a benchmark in the field and many subsequent results on embedding spanning graphs of maximum degree Δ in random graphs are proven only up to this threshold. We take a step towards overcoming limitations of former techniques by showing that is almost surely ‐universal for .