skip to main content

Title: Parallel introgression and selection on introduced alleles in a native species

As humans cause the redistribution of species ranges, hybridization between previously allopatric species is on the rise. Such hybridization can have complex effects on overall fitness of native species as new allelic combinations are tested. Widespread species introductions provide a unique opportunity to study selection on introgressed alleles in independent, replicated populations. We examined selection on alleles that repeatedly introgressed from introduced rainbow trout (Oncorhynchus mykiss) into native westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations in western Canada. We found that the degree of introgression of individual single nucleotide polymorphisms from the invasive species into the native is correlated between independent watersheds. A number of rainbow trout alleles have repeatedly swept to high frequency in native populations, suggesting parallel adaptive advantages. Using simulations, we estimated large selection coefficients up to 0.05 favoring several rainbow trout alleles in the native background. Although previous studies have found reduced hybrid fitness and genome‐wide resistance to introgression in westslope cutthroat trout, our results suggest that some introduced genomic regions are strongly favored by selection. Our study demonstrates the utility of replicated introductions as case studies for understanding parallel adaptation and the interactions between selection and introgression across the genome. We suggest that understanding this variation, including consideration of beneficial alleles, can inform management strategies for hybridizing species.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
p. 2802-2813
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate‐induced expansion of invasive hybridization (breeding between invasive and native species) poses a significant threat to the persistence of many native species worldwide. In the northern U.S. Rocky Mountains, hybridization between native cutthroat trout and non‐native rainbow trout has increased in recent decades due, in part, to climate‐driven increases in water temperature. It has been postulated that invasive hybridization may enhance physiological tolerance to climate‐induced thermal stress because laboratory studies indicate that rainbow trout have a higher thermal tolerance than cutthroat trout. Here, we assessed whether invasive hybridization improves cardiac performance response to acute water temperature stress of native wild trout populations. We collected trout from four streams with a wide range of non‐native admixture among individuals and with different temperature and streamflow regimes in the upper Flathead River drainage, USA. We measured individual cardiac performance (maximum heart rate, “MaxHR”, and temperature at arrhythmia, “ArrTemp”) during laboratory trials with increasing water temperatures (10–28°C). Across the study populations, we observed substantial variation in cardiac performance of individual trout when exposed to thermal stress. Notably, we found significant differences in the cardiac response to thermal regimes among native cutthroat trout populations, suggesting the importance of genotype‐by‐environment interactions in shaping the physiological performance of native cutthroat trout. However, rainbow trout admixture had no significant effect on cardiac performance (MaxHR and ArrTemp) within any of the three populations. Our results indicate that invasive hybridization with a warmer‐adapted species does not enhance the cardiac performance of native trout under warming conditions. Maintaining numerous populations across thermally and hydrologically diverse stream environments will be crucial for native trout to adapt and persist in a warming climate.

    more » « less
  2. Abstract

    Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co‐occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first‐generation hybrids. Later‐generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual‐based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.

    more » « less
  3. Abstract

    A growing number of recent studies have demonstrated that introgression is common across the tree of life. However, we still have a limited understanding of the fate and fitness consequence of introgressed variation at the whole-genome scale across diverse taxonomic groups. Here, we implemented a phylogenetic hidden Markov model to identify and characterize introgressed genomic regions in a pair of well-diverged, nonsister sea urchin species: Strongylocentrotus pallidus and Strongylocentrotus droebachiensis. Despite the old age of introgression, a sizable fraction of the genome (1% to 5%) exhibited introgressed ancestry, including numerous genes showing signals of historical positive selection that may represent cases of adaptive introgression. One striking result was the overrepresentation of hyalin genes in the identified introgressed regions despite observing considerable overall evidence of selection against introgression. There was a negative correlation between introgression and chromosome gene density, and two chromosomes were observed with considerably reduced introgression. Relative to the nonintrogressed genome-wide background, introgressed regions had significantly reduced nucleotide divergence (dXY) and overlapped fewer protein-coding genes, coding bases, and genes with a history of positive selection. Additionally, genes residing within introgressed regions showed slower rates of evolution (dN, dS, dN/dS) than random samples of genes without introgressed ancestry. Overall, our findings are consistent with widespread selection against introgressed ancestry across the genome and suggest that slowly evolving, low-divergence genomic regions are more likely to move between species and avoid negative selection following hybridization and introgression.

    more » « less
  4. Abstract

    We used historical stocking and population survey records of Yellowstone Cutthroat TroutOncorhynchus clarkii bouvieriand other salmonids in the North Fork Shoshone River drainage, Wyoming to summarize fish stocking history and population trends. Based on 98 years of historical records, we found that despite extensive stocking of Yellowstone Cutthroat Trout and minimal stocking of nonnative salmonids after about 1950, populations of wild Yellowstone Cutthroat Trout declined relative to those of nonnative salmonid species. The timing of increases in nonnative salmonids (1970s) did not coincide with their period of most intensive stocking (1935–1950). It is plausible that Yellowstone Cutthroat Trout populations persisted because of high levels of supplemental stocking from 1935 to 1965 and declined with reduced stocking efforts in the 1970s, thereby allowing the increase of introduced nonnative salmonids. The establishment of nonnative salmonids likely further reduced stocking success of Yellowstone Cutthroat Trout due to competition and hybridization. This study demonstrates that an understanding of long‐term stocking records and population survey data can be useful for developing and implementing successful management frameworks for the conservation of imperiled fish populations across the United States.

    more » « less
  5. Abstract Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the genomic consequences of these events on the architecture of extant genomes. We applied phylogenomic techniques and several complementary statistical tests to show that introgressive hybridization appears to have occurred between close relatives of Arabidopsis, resulting in cytonuclear discordance and impacting our understanding of species relationships in the group. The composition of introgressed and retained genes indicates that selection against incompatible cytonuclear and nuclear-nuclear interactions likely acted during introgression, while linkage also contributed to genome composition through the retention of ancient haplotype blocks. We also applied divergence-based tests to determine the species branching order and distinguish donor from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most of the nuclear genome was displaced during introgression, while only a small proportion of native alleles were retained. 
    more » « less