skip to main content


Title: Widespread detection of Candidatus Accumulibacter phosphatis, a polyphosphate‐accumulating organism, in sediments of the Columbia River estuary
Summary

Enhanced biological phosphorus removal (EBPR) exploits the metabolism of polyphosphate‐accumulating organisms (PAOs) to remove excess phosphorus (P) from wastewater treatment.CandidatusAccumulibacter phosphatis (Accumulibacter) is the most abundant and well‐studied PAO in EBPR systems. In a previous study, we detected polyphosphates throughout peripheral bay sediments, and hypothesized that an estuary is an ideal setting to evaluate PAOs in a natural system, given that estuaries are characterized by dynamic dissolved oxygen fluctuations that potentially favour PAO metabolism. We detected nucleotide sequences attributable to Accumulibacter (16S rRNA,ppk1) in sediments within three peripheral bays of the Columbia River estuary at abundances rivalling those observed in conventional wastewater treatment plants (0.01%–2.6%). Most of the sequences attributable to Accumulibacter were Type I rather than Type II, despite the fact that the estuary does not have particularly high nutrient concentrations. The highest diversity of Accumulibacter was observed in oligohaline peripheral bays, while the greatest abundances were observed at the mouth of the estuary in mesohaline sediments in the spring and summer. In addition, an approximately 70% increase in polyphosphate concentrations observed at one of the sites between dawn and dusk suggests that PAOs may play an important role in P cycling in estuary sediments.

 
more » « less
NSF-PAR ID:
10461114
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
21
Issue:
4
ISSN:
1462-2912
Page Range / eLocation ID:
p. 1369-1382
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hug, Laura A. (Ed.)
    ABSTRACT Natural microbial communities consist of closely related taxa that may exhibit phenotypic differences and inhabit distinct niches. However, connecting genetic diversity to ecological properties remains a challenge in microbial ecology due to the lack of pure cultures across the microbial tree of life. “ Candidatus Accumulibacter phosphatis” (Accumulibacter) is a polyphosphate-accumulating organism that contributes to the enhanced biological phosphorus removal (EBPR) biotechnological process for removing excess phosphorus from wastewater and preventing eutrophication from downstream receiving waters. Distinct Accumulibacter clades often coexist in full-scale wastewater treatment plants and laboratory-scale enrichment bioreactors and have been hypothesized to inhabit distinct ecological niches. However, since individual strains of the Accumulibacter lineage have not been isolated in pure culture to date, these predictions have been made solely on genome-based comparisons and enrichments with varying strain compositions. Here, we used genome-resolved metagenomics and metatranscriptomics to explore the activity of coexisting Accumulibacter strains in an engineered bioreactor environment. We obtained four high-quality genomes of Accumulibacter strains that were present in the bioreactor ecosystem, one of which is a completely contiguous draft genome scaffolded with long Nanopore reads. We identified core and accessory genes to investigate how gene expression patterns differed among the dominating strains. Using this approach, we were able to identify putative pathways and functions that may confer distinct functions to Accumulibacter strains and provide key functional insights into this biotechnologically significant microbial lineage. IMPORTANCE “ Candidatus Accumulibacter phosphatis” is a model polyphosphate-accumulating organism that has been studied using genome-resolved metagenomics, metatranscriptomics, and metaproteomics to understand the EBPR process. Within the Accumulibacter lineage, several similar but diverging clades are defined by the shared sequence identity of the polyphosphate kinase ( ppk1 ) locus. These clades are predicted to have key functional differences in acetate uptake rates, phage defense mechanisms, and nitrogen-cycling capabilities. However, such hypotheses have largely been made based on gene content comparisons of sequenced Accumulibacter genomes, some of which were obtained from different systems. Here, we performed time series genome-resolved metatranscriptomics to explore gene expression patterns of coexisting Accumulibacter clades in the same bioreactor ecosystem. Our work provides an approach for elucidating ecologically relevant functions based on gene expression patterns between closely related microbial populations. 
    more » « less
  2. Abstract Practitioner Points

    PPCP removal positively correlated with solids retention time and varied by treatment facility and compound.

    Upgrade of WWTFs for biological nitrogen removal may also increase PPCP removal.

    Surface water fluoxetine concentrations may present an ecological risk to the Great Bay Estuary.

     
    more » « less
  3. Soklida, Hong ; Mari-KH, Winkler ; Zhiwu, Wang ; Goel, Ramesh (Ed.)
    This research studied integrated fixed film activated sludge (IFAS) technology to simultaneously remove N and P in real municipal wastewater by combining anammox biofilms with flocculent activated sludge for enhanced biological P removal (EBPR). The study was conducted in a sequencing batch reactor (SBR) operated as a conventional A2O (anaerobic-anoxic-oxic) process with an 8.8 h hydraulic retention time. After achieving steady-state operation, the reactor showed robust performance, with average removal efficiencies of 91.3±4.1% for total inorganic nitrogen (TIN) and 98.4±2.4% for phosphorus (P). Denitrifying polyphosphate accumulating organisms (DPAOs) were responsible for 15.9% of P uptake during the anoxic phase, while biofilms showed anammox activity in the aerobic step. The IFAS configuration with a low solid retention time (SRT) of 5 days prevented the washout of biofilm anammox bacteria and allowed selective washout of unwanted organisms. The results demonstrated the successful coexistence of anammox bacteria with other bacteria for efficient nutrient removal in real wastewater conditions. 
    more » « less
  4. Abstract Practitioner points

    Evaluated alone τANexhibits no statistical effect on effluent phosphorus in an EBPR configuration.

    Increased PHA synthesis, associated with increased VFAs and/or extended τAN,enhances aerobic phosphorus removal.

    PHA synthesis normalized to VFA loading increased with τAN, suggesting fermentation in the EBPR anaerobic zone.

    Aerobic phosphorus uptake increases linearly with anaerobic phosphorus release, with the slope exceeding unity.

    Increased VFAs can be substituted for shorter anaerobic HRTs, and vice versa, to enhance EBPR performance.

     
    more » « less
  5. Abstract Practitioner Points

    Post‐anoxic EBPR can achieve effluent of <0.2 mgP/L and <12 mgN/L.

    The P:C and VFA:P ratios can be predictive for EBPR process monitoring.

    Post‐anoxic EBPR was enriched forNitrobacterspp. overNitrospiraspp. and also forParcubacteria, which is a putative fermenting heterotrophic organism.

    Post‐anoxic specific denitrification rates (20°C) ranged from 0.70 to 3.10 mgN/gVSS/h.

    BLASTn analysis of 16S rDNA PAO primer set was shown to be improved to 93.8% for Ca. Accumulibacter phosphatis and 73.2%–94.0% for all potential PAOs.

     
    more » « less