High-intensity focused ultrasound (HIFU) has been investigated as a remote and controlled activation method to noninvasively actuate shape memory polymers (SMPs), specifically in biomedical applications. However, the effects of aqueous environment on shape recoverability of
Thermoset shape memory polymers (SMPs) have a series of advantages in practical applications when compared with thermoplastic SMPs. However, the reprocessing and reshaping of thermosets are difficult due to the covalent crosslinking which severely limits the reconfiguration of polymer networks even under high temperature. Here, hinered urea bond (HUB), a urea bearing a bulky substituent on its nitrogen atom that can reversibly dissociate to the corresponding bulky amine and isocyanate, is integrated into the poly(urea‐urethane) (PUU) crosslinked networks, enabling the networks to topologically reconfigure to other structures. Instead of having to cure the thermoset in a mold, the incorporation of HUBs can decouple the synthesis and shape‐forming steps, which is a huge advantage for the processing of thermoset materials compared to conventional thermosets. This new PUU thermoset shows a broad glass transition behavior and exhibits excellent triple‐shape‐memory performance. With the incorporation of this dynamic urea bonds, permanent shapes can be flexibly tuned via the network reconfiguration, which is often neglected but significant to the practical application of SMPs.
more » « less- PAR ID:
- 10461213
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Chemistry and Physics
- Volume:
- 220
- Issue:
- 12
- ISSN:
- 1022-1352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract in vivo HIFU-actuated SMPs have yet to be explored. HIFU directs sound waves into a millimeter-sized tightly focused region. In this study, the response of hydrophilic and hydrophobic photopolymerized thermoset SMP networks under HIFU activation in an aqueous environment was investigated. Acrylate-based SMP networks were copolymerized in specific ratios to produce networks with independently adjusted glass transition temperatures ranging from 40 to 80 °C and two distinct water uptake behaviors. The results link the polymer swelling behavior to shape recoverability in various acoustic fields. The presence of absorbed water molecules enhances the performance of SMPs in terms of their shape memory capabilities when activated by HIFU. Overall, understanding the interplay between water uptake and HIFU-actuated shape recovery is essential for optimizing the performance of SMPs in aqueous environments and advancing their use in various medical applications. -
ABSTRACT Shape memory polymers (SMPs) are a class of responsive polymers that have attracted attention in designing biomedical devices because of their potential to improve minimally invasive surgeries. Use of porous SMPs in vascular grafts has been proposed because porosity aids in transfer of fluids through the graft and growth of vascular tissue. However, porosity also allows blood to leak through grafts so preclotting the materials is necessary. Here hydrogels have been synthesized from acrylic acid and
N ‐hydroxyethyl acrylamide and coated around a porous SMP produced from lactose functionalized polyurea‐urethanes. The biocompatibility of the polymers used to prepare the cross‐linked shape memory material is demonstrated using anin vitro cell assay. As expected, the hydrogel coating enhanced fluid uptake abilities without hindering the shape memory properties. These results indicate that hydrogels can be used in porous SMP materials without inhibiting the shape recovery of the material. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1389–1395 -
Abstract A new approach for reprocessing of existing thermoset waste is presented. This work demonstrates that unrecyclable thermoset materials can be reprocessed using the concept of associative dynamic bonding, vitrimers. The developed recycling methodology relies on swelling the thermoset network into a solution of a catalyst, which enables transesterification reactions allowing dynamic bond exchange between ester and hydroxyl groups within the thermoset network. Thermal and mechanical properties for recycled polyurethane and epoxy networks are studied and a strategy to maintain the properties of recycled materials is discussed. The developed methodology promises recycling and even upcycling and reprocessing of previously thought intractable materials. Moreover, processability of vitrimerized thermosets with common thermoplastic manufacturing methods opens up the possibility of tuning recycled networks by adding nanoparticles. This flexibility keeps the application window of recycled thermosets very broad.
-
Abstract High-performance lightweight architectures, such as metallic microlattices with excellent mechanical properties have been 3D printed, but they do not possess shape memory effect (SME), limiting their usages for advanced engineering structures, such as serving as a core in multifunctional lightweight sandwich structures. 3D printable self-healing shape memory polymer (SMP) microlattices could be a solution. However, existing 3D printable thermoset SMPs are limited to either low strength, poor stress memory, or non-recyclability. To address this issue, a new thermoset polymer, integrated with high strength, high recovery stress, perfect shape recovery, good recyclability, and 3D printability using direct light printing, has been developed in this study. Lightweight microlattices with various unit cells and length scales were printed and tested. The results show that the cubic microlattice has mechanical strength comparable to or even greater than that of metallic microlattices, good SME, decent recovery stress, and recyclability, making it the first multifunctional lightweight architecture (MLA) for potential multifunctional lightweight load carrying structural applications.
-
Abstract 3D structures that incorporate high‐performance electronic materials and allow for remote, on‐demand 3D shape reconfiguration are of interest for applications that range from ingestible medical devices and microrobotics to tunable optoelectronics. Here, materials and design approaches are introduced for assembly of such systems via controlled mechanical buckling of 2D precursors built on shape‐memory polymer (SMP) substrates. The temporary shape fixing and recovery of SMPs, governed by thermomechanical loading, provide deterministic control over the assembly and reconfiguration processes, including a range of mechanical manipulations facilitated by the elastic and highly stretchable properties of the materials. Experimental demonstrations include 3D mesostructures of various geometries and length scales, as well as 3D aquatic platforms that can change trajectories and release small objects on demand. The results create many opportunities for advanced, programmable 3D microsystem technologies.