skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Bioinspired Nacre‐Like Alumina with a Metallic Nickel Compliant Phase Fabricated by Spark‐Plasma Sintering

Many natural materials present an ideal “recipe” for the development of future damage‐tolerant lightweight structural materials. One notable example is the brick‐and‐mortar structure of nacre, found in mollusk shells, which produces high‐toughness, bioinspired ceramics using polymeric mortars as a compliant phase. Theoretical modeling has predicted that use of metallic mortars could lead to even higher damage‐tolerance in these materials, although it is difficult to melt‐infiltrate metals into ceramic scaffolds as they cannot readily wet ceramics. To avoid this problem, an alternative (“bottom‐up”) approach to synthesize “nacre‐like” ceramics containing a small fraction of nickel mortar is developed. These materials are fabricated using nickel‐coated alumina platelets that are aligned using slip‐casting and rapidly sintered using spark‐plasma sintering. Dewetting of the nickel mortar during sintering is prevented by using NiO‐coated as well as Ni‐coated platelets. As a result, a “nacre‐like” alumina ceramic displaying a resistance‐curve toughness up to ≈16 MPa m½with a flexural strength of ≈300 MPa is produced.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solid‐state lithium‐metal batteries with solid electrolytes are promising for next‐generation energy‐storage devices. However, it remains challenging to develop solid electrolytes that are both mechanically robust and strong against external mechanical load, due to the brittleness of ceramic electrolytes and the softness of polymer electrolytes. Herein, a nacre‐inspired design of ceramic/polymer solid composite electrolytes with a “brick‐and‐mortar” microstructure is proposed. The nacre‐like ceramic/polymer electrolyte (NCPE) simultaneously possesses a much higher fracture strain (1.1%) than pure ceramic electrolytes (0.13%) and a much larger ultimate flexural modulus (7.8 GPa) than pure polymer electrolytes (20 MPa). The electrochemical performance of NCPE is also much better than pure ceramic or polymer electrolytes, especially under mechanical load. A 5 × 5 cm2pouch cell with LAGP/poly(ether‐acrylate) NCPE exhibits stable cycling with a capacity retention of 95.6% over 100 cycles at room temperature, even undergoes a large point load of 10 N. In contrast, cells based on pure ceramic and pure polymer electrolyte show poor cycle life. The NCPE provides a new design for solid composite electrolyte and opens up new possibilities for future solid‐state lithium‐metal batteries and structural energy storage.

    more » « less
  2. Lightweight and strong structural materials attract much attention due to their strategic applications in sports, transportation, aerospace, and biomedical industries. Nacre exhibits high strength and toughness from the brick-and-mortar–like structure. Here, we present a route to build nacre-inspired hierarchical structures with complex three-dimensional (3D) shapes by electrically assisted 3D printing. Graphene nanoplatelets (GNs) are aligned by the electric field (433 V/cm) during 3D printing and act as bricks with the polymer matrix in between as mortar. The 3D-printed nacre with aligned GNs (2 weight %) shows lightweight property (1.06 g/cm 3 ) while exhibiting comparable specific toughness and strength to the natural nacre. In addition, the 3D-printed lightweight smart armor with aligned GNs can sense its damage with a hesitated resistance change. This study highlights interesting possibilities for bioinspired structures, with integrated mechanical reinforcement and electrical self-sensing capabilities for biomedical applications, aerospace engineering, as well as military and sports armors. 
    more » « less
  3. Abstract

    ZrB2ceramics were prepared by in‐situ reaction hot pressing of ZrH2and B. Additions of carbon and excess boron were used to react with and remove the residual oxygen present in the starting powders. Additions of tungsten were utilized to make a ZrB2‐4 mol%W ceramic, while a change in the B/C ratio was used to produce a ZrB2‐10 vol% ZrC ceramic. All three compositions reached near full density. The baseline ZrB2and ZrB2–ZrC composition contained a residual oxide phase and ZrC inclusions, while the W‐doped composition contained residual carbon and a phase that contained tungsten and boron. All three compositions exhibited similar values for flexure strength (~520 MPa), Vickers hardness (~15 GPa), and elastic modulus (~500 to 540 GPa). Fracture toughness was about 2.6 MPa m1/2for the W‐doped ZrB2compared to about 3.8 MPa m½for the ZrB2and ZrB2–ZrC ceramics. This decrease in fracture toughness was accompanied by an observed absence of crack deflection in the W‐doped ZrB2compared with the other compositions. The study demonstrated that reaction‐hot‐pressing can be used to fabricate ZrB2based ceramics containing solid solution additives or second phases with comparable mechanical properties.

    more » « less
  4. Abstract

    The layered architecture of stiff biological materials often endows them with surprisingly high fracture toughness in spite of their brittle ceramic constituents. Understanding the link between organic–inorganic layered architectures and toughness could help to identify new ways to improve the toughness of biomimetic engineering composites. We study the cylindrically layered architecture found in the spicules of the marine spongeEuplectella aspergillum. We cut micrometer-size notches in the spicules and measure their initiation toughness and average crack growth resistance using flexural tests. We find that while the spicule’s architecture provides toughness enhancements, these enhancements are relatively small compared to prototypically tough biological materials, like nacre. We investigate these modest toughness enhancements using computational fracture mechanics simulations.

    more » « less
  5. Abstract

    Sintering additives are generally considered to be important for improving densification in fabrication of transparent ceramics. However, the sintering aids as impurities doped in the laser materials would decrease the laser output power and produce additional heat during laser operation. In this work, Yb:YAG ceramics were vacuum‐sintered without additives at different temperatures for various soaking time through using ball‐milled powders synthesized by co‐precipitation route. The densification behavior and grain growth kinetics of Yb:YAG ceramics were systematically investigated through densification curves and microstructural characterizations. It was determined that the densification in the 1500°C‐1600°C temperature range was controlled by a grain‐boundary diffusion. It is revealed that the volume diffusion is the main mechanism controlling the grain growth between 1600°C and 1750°C. Although SiO2additives can promote densification during low‐temperature sintering, the optical transmittance of Yb:YAG ceramic with no additives, sintered at 1800°C for 15 hours, reaches a maximum of 83.4% at 1064 nm, very close to the measured transmittance value of Yb:YAG single crystal. The optical attenuation loss was measured at 1064 nm in Yb:YAG transparent ceramic, to be 0.0035 cm−1, a value close to that observed for single crystals.

    more » « less