skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modification of narrow‐spectrum peptidomimetic polyurethanes with fatty acid chains confers broad‐spectrum antibacterial activity
Abstract Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such asEscherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such asStaphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such asS. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry  more » « less
Award ID(s):
1659531
PAR ID:
10461241
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer International
Volume:
68
Issue:
7
ISSN:
0959-8103
Format(s):
Medium: X Size: p. 1255-1262
Size(s):
p. 1255-1262
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Bacterial infections are re-emerging as substantial threats to global health due to the limited selection of antibiotics that are capable of overcoming antibiotic-resistant strains. By deterring such mutations whilst minimizing the need to develop new pathogen-specific antibiotics, immunotherapy offers a broad-spectrum therapeutic solution against bacterial infections. In particular, pathology resulting from excessive immune response ( i.e. fibrosis, necrosis, exudation, breath impediment) contributes significantly to negative disease outcome. Herein, we present a nanoparticle that is targeted to activated macrophages and loaded with siRNA against the Irf5 gene. This formulation is able to induce >80% gene silencing in activated macrophages in vivo , and it inhibits the excessive inflammatory response, generating a significantly improved therapeutic outcome in mouse models of bacterial infection. The versatility of the approach is demonstrated using mice with antibiotic-resistant Gram-positive (methicillin-resistant Staphylococcus aureus ) and Gram-negative ( Pseudomonas aeruginosa ) muscle and lung infections, respectively. Effective depletion of the Irf5 gene in macrophages is found to significantly improve the therapeutic outcome of infected mice, regardless of the bacteria strain and type. 
    more » « less
  2. Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon. 
    more » « less
  3. Abstract Staphylococcus aureusis an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users.S. aureusconcentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk ofS. aureusinfections from environmental waters,S. aureussurvival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measureS. aureusin turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhancedS. aureussurvival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of Oʻahu, Hawaiʻi.S. aureuswas detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations ofS. aureuswere in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmentalS. aureusconcentrations.S. aureuspersistence over the extent of the experiment was the greatest in high turbidity microcosms with T90's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence ofS. aureuscommunities that may increase the risk of exposure in environmental waters. Practitioner PointsStaphylococcus aureusconcentrations, survival, and persistence were assessed in environmental fresh and brackish waters.Experimental design preserved in situ conditions to measureS. aureussurvival.Higher initialS. aureusconcentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters.Water turbidity and salinity were both positively associated withS. aureusconcentrations and persistence.Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk toS. aureus. 
    more » « less
  4. According to the CDC, there are more than 2.8 million antibiotic resistant infections occurring in the United States each year, and more than 35,000 people die as a result (CDC 2019). Furthermore, the CDC classifies a group of bacteria known as ESKAPE pathogens as six emerging antibiotic-resistant pathogens that are difficult to eradicate with current antibiotics. Our study aims to identify and characterize soil-derived microorganisms with the potential to produce antimicrobial compounds effective against safe relatives of ESKAPE pathogens, with the goal of translating these findings to combat their pathogenic counterparts. We hypothesize that bacteria identified from the soil will inhibit the growth of the following nosocomial associated safe relatives Bacillus subtilis for E. faecium, Staphylococcus epidermidis for S. aureus, Escherichia coli for Klebsiella pneumoniae, Acinetobacter baylyi for A. baumannii, Pseudomonas putida for P. aeruginosa, and Enterobacter aerogenes for Enterobacter species. To test our hypothesis, soil samples were collected from Fayetteville State University (FSU) campus and serially diluted onto LB agar plates. Sixty-three distinct colonies were isolated and screened against non-pathogenic ESKAPE safe relatives. Of the 63 Fayetteville State University soil isolates (FSIs) screened, 12 (19%) exhibited antimicrobial activity against at least one of the six ESKAPE safe relatives, with all 12 inhibiting Acinetobacter baylyi and only FSI 15 demonstrating broad-spectrum inhibition. Characterization assays revealed that 11 of the 12 isolates were Gram-negative, catalase-positive, and motile; the single Gram-positive isolate (FSI 4) was catalase-negative and non-motile. All isolates displayed resistance to penicillin, while most remained susceptible to tetracycline and ciprofloxacin. These findings support our hypothesis that soil-derived bacteria can produce putative antimicrobial compounds effective against non-pathogenic ESKAPE safe relatives. This study underscores the potential of soil microbiota on the campus of Fayetteville State University as a source of novel antimicrobial agents capable of inhibiting antibiotic resistant ESKAPE pathogens and warrant further investigation into their therapeutic potential 
    more » « less
  5. The threat of antibiotic resistance warrants the discovery of agents with novel antimicrobial mechanisms. Antimicrobial peptides (AMPs) directly disrupting bacterial membranes may overcome resistance to traditional antibiotics. AMP development for clinical use has been mostly limited to topical application to date. We developed a rational framework for systematically addressing this challenge using libraries composed of 86 novel Trp- and Arg-rich engineered peptides tested against clinical strains of the most common multidrug-resistant bacteria known as ESKAPE pathogens. Structure-function correlations revealed minimum lengths (as low as 16 residues) and Trp positioning for maximum antibacterial potency with mean minimum inhibitory concentration (MIC) of 2–4 μM and corresponding negligible toxicity to mammalian cells. Twelve peptides were selected based on broad-spectrum activity against both gram-negative and -positive bacteria and <25% toxicity to mammalian cells at maximum test concentrations. Most of the selected PAX remained active against the colistin-resistant clinical strains. Of the selected peptides, the shortest (the 16-residue E35) was further investigated for antibacterial mechanism and proof-of-concept in vivo efficacy. E35 killed an extensively-resistant isolate of Pseudomonas aeruginosa (PA239 from the CDC, also resistant to colistin) by irreversibly disrupting the cell membranes as shown by propidium iodide incorporation, using flow cytometry and live cell imaging. As proof of concept, in vivo toxicity studies showed that mice tolerated a systemic dose of up to 30 mg/kg peptide and were protected with a single 5 mg/kg intravenous (IV) dose against an otherwise lethal intraperitoneal injection of PA239. Efficacy was also demonstrated in an immune-compromised Klebsiella pneumoniae infection model using a daily dose of 4mg/kg E35 systemically for 2 days. This framework defines the determinants of efficacy of helical AMPs composed of only cationic and hydrophobic amino acids and provides a path for a potential departure from the restriction to topical use of AMPs toward systemic application. 
    more » « less