skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moisture Sensitive Smart Yarns and Textiles from Self‐Balanced Silk Fiber Muscles
Abstract Smart textiles that sense, interact, and adapt to environmental stimuli have provided exciting new opportunities for a variety of applications. However, current advances have largely remained at the research stage due to the high cost, complexity of manufacturing, and uncomfortableness of environment‐sensitive materials. In contrast, natural textile materials are more attractive for smart textiles due to their merits in terms of low cost and comfortability. Here, water fog and humidity‐driven torsional and tensile actuation of thermally set twisted, coiled, plied silk fibers, and weave textiles from these silk fibers are reported. When exposed to water fog, the torsional silk fiber provides a fully reversible torsional stroke of 547° mm−1. Coiled‐and‐thermoset silk yarns provide a 70% contraction when the relative humidity is changed from 20% to 80%. Such an excellent actuation behavior originates from water absorption‐induced loss of hydrogen bonds within the silk proteins and the associated structural transformation, which are corroborated by atomistic and macroscopic characterization of silk and molecular dynamics simulations. With its large abundance, cost‐effectiveness, and comfortability for wearing, the silk muscles will open up additional possibilities in industrial applications, such as smart textiles and soft robotics.  more » « less
Award ID(s):
1727960
PAR ID:
10461291
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
29
Issue:
18
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Multifunctional fibers with high mechanical strength enable advanced applications of smart textiles, robotics, and biomedicine. Herein, we reported a one-step degumming method to fabricate strong, stiff, and humidity-responsive smart cellulosic fibers from abundant natural grass. The facile process involves partially removing lignin and hemicellulose functioning as glue in grass, which leads to the separation of vessels, parenchymal cells, and cellulosic fibers, where cellulosic fibers are manufactured at kilogram scale. The resulting fibers show dense and unidirectional fibril structure at both micro- and nano-scales, which demonstrate high tensile strength of ∼0.9 GPa and Young's modulus of 72 GPa, being 13- and 14-times higher than original grass. Inspired by stretchable plant tendrils, we developed a humidity-responsive actuator by engineering cellulosic fibers into the spring-like structures, presenting superior response rate and lifting capability. These strong and smart cellulosic fibers can be manufactured at large scale with low cost, representing promising a fiber material derived from renewable and sustainable biomass. 
    more » « less
  2. Abstract Smart textiles are currently being pursued for actuation and sensing for their potential to directly incorporate “intelligence” into the fabric, in contrast to wearable technologies. In smart textiles, smart materials (e.g., piezoelectric) are formed into yarns that are woven into fabrics for clothing. One immediate requirement for such textiles is their stability during washing cycles, as expected of any clothing items, which has been largely lacking so far. Here, we investigate the washing stability of nanofibrous piezoelectric textiles. Our results reveal that electrospun textiles exhibit remarkable structural stability from the fiber microstructure to the textile level. Overall fiber crystalline composition and electroactive phase remain stable within 1% of ~47% and ~85%, respectively. Mechanically, the textile displays sustained performance, with only negligible changes observed. The yield strain and stress only show a ~8% and 9% differences, respectively. Moreover, piezoelectric stability is confirmed through phase preservation and slight variation in voltage output of ~6%. These results prove the candidacy that the processing of electrospun polyvinylidene fluoride (PVDF) fibers to woven textiles is applicable to the demands of smart textiles, which is expected to accelerate the commercialization of such textiles for wearable robotics and health monitoring. 
    more » « less
  3. Abstract Biological water-responsive materials that deform with changes in relative humidity have recently demonstrated record-high actuation energy densities, showing promise as high-performance actuators for various engineering applications. However, there is a lack of theories capable of explaining or predicting the stress generated during water-responsiveness. Here, we show that the nanoscale confinement of water dominates the macroscopic dehydration-induced stress of the regenerated silk fibroin. We modified silk fibroin’s secondary structure, which leads to various distributions of bulk-like mobile and tightly bound water populations. Interestingly, despite these structure variations, all silk samples start to exert force when the bound-to-mobile (B/M) ratio of confined water reaches the same level. This critical B/M water ratio suggests a common threshold above which the chemical potential of water instigates the actuation. Our findings serve as guidelines for predicting and engineering silk’s WR behavior and suggest the potential of describing the WR behavior of biopolymers through confined water. 
    more » « less
  4. Silk fibers produced by arthropods have inspired an array of materials with applications in healthcare, medical devices, textiles, and sustainability. Silks exhibit biodiversity with distinct variations in primary protein constituent sequences (fibroins, spidroins) and structures across taxonomic classifications, specifically the Lepidopteran and Araneae orders. Leveraging the biodiversity in arthropod silks offers advantages due to the diverse mechanical properties and thermal stabilities achievable, primarily attributed to variations in fiber crystallinity and repeating amino acid motifs. In this review, we aim to delineate known properties of silk fibers and correlate them with predicted protein sequences and secondary structures, informed by newly annotated genomes. We will discuss established patterns in repeat motifs governing specific properties and underscore the biological diversity within silk fibroin and spidroin sequences. Elucidating the relationship between protein sequences and properties of natural silk fibers will identify strategies for designing new materials through rational silk-based fiber design. 
    more » « less
  5. Thanks to its comparable specific mechanical properties to glass fibers, silk is a natural fiber that can be used as an eco-friendly alternative to synthetic reinforcing fibers in composite materials. Compared to natural fibers, especially plant fibers, silk enjoys higher mechanical performances, lower density, and higher elongation even at low temperatures, silk also exhibits other attractive qualities like flame resistance and being naturally continuous. However, silk is known to be prone to moisture absorption from surrounding humid environments. Moisture absorption may alter the silk/resin dynamics during composite manufacturing, and later lead to prem-ature degradation in the composite thermomechanical properties. This study investigates the effect of humidity on silk/resin wettability using two different resins (one epoxy and one vinyl ester) and three different silk architectures. Silk fibers are first exposed to different relative humidity environments. Subsequently, the affinity of the conditioned silk to a set of resins is assessed through measurements of silk/resin contact angle over time. Different silk/resin systems were observed to have contrasting responses to humidity exposure. While some silk/resin systems, such as Ahimsa/epoxy, did not show any change after humidity exposure. Other combinations showed tremendous susceptibility of silk/resin affinity to prior exposure of silk to humidity. For instance, although starting at virtually the same initial hydrophobic contact angle of ~123 degrees, Habotai silk/epoxy samples had contrasting wetting times. While the dried Habotai silk reached full wetting after around 5 minutes, the silk samples exposed to humidity took around 1 hour to reach full im-pregnation. These findings demonstrate the importance of humidity exposure control in silk reinforced composites. Keywords: Natural-Fiber Composites, Contact Angle, Silk, Wettability, Humidity. 
    more » « less